On CCC boolean algebras and partial orders

A. HAJNAL*, I. JUHÁSZ*, Z. SZENTMIKLÓSSY*

Abstract. We partially strengthen a result of Shelah from [Sh] by proving that if $\kappa = \kappa^{\omega}$ and P is a CCC partial order with e.g. $|P| \leq \kappa^{+\omega}$ (the ω^{th} successor of κ) and $|P| \leq 2^{\kappa}$ then P is κ -linked.

Keywords: boolean algebra, partial order, CCC

Classification: 06A07, 06E10, 04A20

Shelah has proved in [Sh] that if κ is a cardinal with $\kappa^{\omega} = \kappa$ then every CCC boolean algebra B with $|B| \leq \kappa^+$ is κ -centered. Equivalently, this means that every CCC compact Hausdorff space X of weight $w(X) \leq \kappa^+$ has density $d(X) \leq \kappa$.

Since $w(X) \leq 2^{d(X)}$ is always valid for a compact T_2 space X, it is natural to raise the question whether κ^+ could be replaced by 2^{κ} in the above result. Shelah mentions in [Sh] without proof that, at least consistently, this cannot be done. Moreover, we have recently shown in [HJSz] that there is, in ZFC, a compact CCC Hausdorff space of density ω_2 and weight 2^{ω_2} . Thus if $2^{\omega} = \omega_1$ and $2^{\omega_1} = 2^{\omega_2} = \omega_3$ this yields a CCC compact T_2 space of weight $\omega_3 = 2^{\omega_1}$ with density greater than ω_1 , or equivalently a CCC boolean algebra of size $\omega_3 = 2^{\omega_1}$ that is not ω_1 -centered.

Our aim in this note is to show that some strengthenings of Shelah's result are nonetheless provable for higher successors of κ . Let us recall for this purpose that a subset A of a partially ordered set $\langle P, \leq \rangle$ is said to be *linked* if for any $p, q \in A$ there is $r \in P$ with $r \leq p, q$, i.e. any two members of A are compatible. We say that P is κ -linked if it is the union of κ many linked subsets and we write

$$\operatorname{link}(P) = \min\{\kappa \ge \omega : P \text{ is } \kappa \text{-linked}\}.$$

If B is a boolean algebra then, of course, we put $link(B) = link(B^+)$.

We have, implicitly, referred above to the fact that any κ -centered boolean algebra B satisfies $|B| \leq 2^{\kappa}$. In fact, the following stronger result is easily provable.

^{*} Research supported by OTKA grant no. 1908

Lemma 1. If B is a boolean algebra then $|B| \leq 2^{\text{link}(B)}$.

PROOF: Let $B^+ = \bigcup \{A_\alpha : \alpha \in \kappa\}$ where each A_α is linked. By Zorn's lemma, we may actually assume that A_α is a maximal linked subset of B^+ for all $\alpha \in \kappa$. Given $b \in B^+$, let

$$I_b = \{ \alpha \in \kappa : b \in A_\alpha \}$$

Clearly, it suffices to show that if $b \neq b'$ then $I_b \neq I_{b'}$.

Assume that $b - b' \neq 0$ and fix $\alpha \in \kappa$ with $b - b' \in A_{\alpha}$. Then $b' \notin A_{\alpha}$ since A_{α} is linked, while $b \in A_{\alpha}$ follows from the maximality of A_{α} . Thus we see that $I_b \neq I_{b'}$.

We may now formulate a partial strengthening of Shelah's result as follows.

Theorem 2. Let $\kappa = \kappa^{\omega}$ and B be a CCC boolean algebra with $|B| \leq 2^{\kappa}$ and also satisfying the following condition (*):

(*) for every cardinal μ if $\kappa < \mu < |B|$ and cf $(\mu) = \omega$ then $\mu^{\omega} = \mu^+$ and \Box_{μ} hold. Then B is κ -linked.

The proof of this theorem is based on the following lemma.

Lemma 3. Assume $\kappa^{\omega} = \kappa$ and that *B* is a boolean algebra which can be written as

$$B = \bigcup \{ X_{\alpha} : \alpha \in \lambda \},\$$

where $\lambda \leq 2^{\kappa}$ and $\{X_{\alpha} : \alpha \in \lambda\}$ is an increasing and continuous sequence of subsets of *B* such that for each $\alpha \in \lambda$ we have $X_{\alpha} = \bigcup \{B_{\alpha}^{n} : n \in \omega\}$ with every B_{α}^{n} being a subalgebra of *B* that is complete and κ -linked. Then *B* is also κ -linked.

PROOF: Let us start by defining for any $b \in B$ and $\langle \alpha, n \rangle \in \lambda \times \omega$ the element $\pi^n_{\alpha}(b)$ of B^n_{α} by

$$\pi^n_{\alpha}(b) = \bigwedge \{ a \in B^n_{\alpha} : b \le a \}.$$

This is always possible since B^n_{α} is complete.

Then we define $\sigma(b)$ as the set of those $\alpha \in \lambda$ for which there is some $b_{\alpha} \in X_{\alpha}$ such that $b \leq b_{\alpha}$ and for every $c \in X_{\beta}$ with $\beta < \alpha$ and b < c we have $c - b_{\alpha} \neq 0$.

We claim that $\sigma(b)$ is a countable subset of λ . Indeed, let us assume indirectly that $|\sigma(b)| \ge \omega_1$ and let $\{\alpha_{\xi} : \xi \in \omega_1\}$ enumerate in the increasing order the first ω_1 members of $\sigma(b)$. For each $\xi \in \omega_1$, since $\alpha_{\xi} \in \sigma(b)$ there is some $b_{\xi} \in X_{\alpha_{\xi}}$ such that $b \le b_{\xi}$ and $c - b_{\xi} \ne 0$ whenever $b \le c$ and $c \in \bigcup \{X_{\beta} : \beta \in \alpha_{\xi}\}$. If $\alpha = \bigcup \{\alpha_{\xi} : \xi \in \omega_1\}$ then there is $n \in \omega$ such that the set

$$z = \{\xi \in \omega_1 : b_{\xi} \in B^n_{\alpha}\}$$

is uncountable and hence $\{\alpha_{\xi} : \xi \in z\}$ is cofinal in α . Now, $\{b_{\xi} : \xi \in z\} \subset B^n_{\alpha}$, hence we have $c = \bigwedge \{b_{\xi} : \xi \in z\} \in B^n_{\alpha}$, as B^n_{α} is complete. By continuity, there is some $\beta < \alpha$ with $c \in X_{\beta}$. But there is some $\xi \in z$ with $\beta < \alpha_{\xi}$ as well, and then $b \leq c \leq b_{\xi}$ contradicts the choice of b_{ξ} .

Next, given two elements $a, b \in B^+$ we call them "connected", and denote this by $a \sim b$, if for each $\alpha \in \sigma(a) \cap \sigma(b)$ and for every $n \in \omega$ we have

$$\pi^n_{\alpha}(a) \wedge \pi^n_{\alpha}(b) \neq 0.$$

We prove then that $a \sim b$ implies $a \wedge b \neq 0$.

Indeed, if $a \wedge b = 0$ then let α be the smallest cardinal for which there is some $c \in X_{\alpha}$ that separates a and b, i.e. $a \leq c$ and $b \wedge c = 0$. We first show that

$$\alpha \in \sigma(a) \cap \sigma(b).$$

That $\alpha \in \sigma(a)$ is witnessed by c, because if $\beta < \alpha$ and $d \in X_{\beta}$ with $a \leq d$ then d cannot separate a and b by the minimality of α , hence $d \wedge b \neq 0$, consequently $d - c \neq 0$. Similarly, we can show that -c witnesses $\alpha \in \sigma(b)$. Let us now choose $n \in \omega$ such that $c \in B^n_{\alpha}$ (and so $-c \in B^n_{\alpha}$). Then $a \leq c$ implies $\pi^n_{\alpha}(a) \leq c$ and similarly $b \leq -c$ implies $\pi^n_{\alpha}(b) \leq -c$, consequently $\pi^n_{\alpha}(a) \wedge \pi^n_{\alpha}(b) = 0$, showing that a and b are not connected.

Given $\langle \alpha, n \rangle \in \lambda \times \omega$ let

$$\mathcal{L}^n_{\alpha} = \{ L^n_{\alpha}(\nu) : \nu \in \kappa \}$$

be a family of linked subsets of B^n_{α} with $(B^n_{\alpha})^+ = \bigcup \mathcal{L}^n_{\alpha}$, i.e. \mathcal{L}^n_{α} shows the κ -linkedness of B^n_{α} .

Consider $\lambda \times \omega \kappa$ as a power of the discrete space $D(\kappa)$ of size κ with the countable support product topology. It is well-known (see e.g. [EK]) that since $\kappa = \kappa^{\omega}$ and $|\lambda \times \omega| = \lambda \leq 2^{\kappa}$ this space has a dense subset $H \subset (\lambda \times \omega) \kappa$ with $|H| = \kappa$.

For any $b \in B^+$ let s_b be the function with domain $\sigma(b) \times \omega$ and having for any $\alpha \in \sigma(b)$ and $n \in \omega$ the value

$$s_b(\alpha, n) = \min\{\nu \in \kappa : \pi^n_\alpha(b) \in L^n_\alpha(\nu)\}.$$

Then s_b determines a basic open set in the above mentioned countable support product space, hence there is some $h \in H$ with $s_b \subset h$ as H is dense in this space. In other words, if we set for $h \in H$

$$L_h = \{ b \in B^+ : s_b \subset h \},\$$

then

$$B^+ = \bigcup \{L_h : h \in H\},\$$

hence we shall be done if we can show that L_h is linked for every $h \in H$.

This, in turn, follows from the following observation: any two members of L_h are connected. Indeed, if $a, b \in L_h$ then $s_a \cup s_b \subset h$, in particular the functions

 s_a and s_b are compatible. But this means that for any $\alpha \in \sigma(a) \cap \sigma(b)$ and $n \in \omega$ we have

$$s_a(\alpha, n) = s_b(\alpha, n) = h(\alpha, n) = \nu_s$$

hence both $\pi_{\alpha}^{n}(a)$ and $\pi_{\alpha}^{n}(b)$ belong to $L_{\alpha}^{n}(\nu)$, i.e. $\pi_{\alpha}^{n}(a) \wedge \pi_{\alpha}^{n}(b) \neq 0$.

The proof of Lemma 3 has thus been completed, and we can now return to that of Theorem 2.

PROOF OF THEOREM 2: We do induction on $\lambda = |B|$. Of course, we may assume that $\kappa < \lambda$. So let us assume that $\lambda > \kappa$ is given and Theorem 2 holds for $|B| < \lambda$. We will distinguish three cases.

Case 1. $cf(\lambda) = \omega$. Now we can write $B = \bigcup \{B_n : n \in \omega\}$, where B_n is a subalgebra of B with $|B| < \lambda$ for each $n \in \omega$. Then B is κ -linked because so is every B_n .

Case 2. $\operatorname{cf}(\lambda) > \omega$ and $\mu < \lambda$ implies $\mu^{\omega} < \lambda$. Clearly, in this case we have $\lambda^{\omega} = \lambda$, hence the completion of *B* also has cardinality λ , hence we may actually assume that *B* is complete. Standard arguments, using that *B* is CCC and $\mu^{\omega} < \lambda$ for $\mu < \lambda$, then imply that we can write *B* in the form

$$B = \bigcup \{ B_{\alpha} : \alpha \in \lambda \},\$$

where $\{B_{\alpha} : \alpha \in \lambda\}$ is an increasing and continuous sequence of subalgebras of B such that $|B_{\alpha}| < \lambda$, moreover B_{α} is complete whenever $cf(\alpha) > \omega$. Note that this automatically implies that for $cf(\alpha) = \omega$ the subalgebra B_{α} is the union of countably many complete subalgebras of B, hence with $B_{\alpha} = X_{\alpha}$ all the assumptions of Lemma 2 are clearly satisfied. Consequently, B is κ -linked.

Case 3. $\lambda = \mu^+$ with $cf(\mu) = \omega$. (Note that, by (*), this must occur if neither Case 1 nor Case 2 applies.) Again, by $\lambda^{\omega} = \lambda$ we may assume that *B* is also complete. Let us then index the members of *B* by the ordinals below λ , i.e. set $B = \{b_{\xi} : \xi \in \lambda\}$.

Since (*) also implies \Box_{μ} , let us fix a corresponding \Box -sequence $\langle C_{\alpha} : \alpha \in \lambda' \rangle$, that is for each limit ordinal $\alpha \in \lambda$ then C_{α} is a closed unbounded subset of α such that $|C_{\alpha}| < \mu$ and $C_{\beta} = \beta \cap C_{\alpha}$ whenever $\beta \in C'_{\alpha}$.

Using cf $(\mu) = \omega$ we may write $\mu = \sum \{\mu_n : n \in \omega\}$ with $\mu_n < \mu$ for each $n \in \omega$, moreover every ordinal $\beta \in \lambda$ can be written as $\beta = \bigcup \{S_{\beta}^n : n \in \omega\}$ with $|S_{\beta}^n| \leq \mu_n$ for all $n \in \omega$. Next, if $\alpha \in \lambda'$ is a limit ordinal then we set $T_{\alpha}^n = \bigcup \{S_{\beta}^n : \beta \in C_{\alpha}\}$. Then we have $|T_{\alpha}^n| \leq |C_{\alpha}| \cdot \mu_n < \mu$.

It is clear from (*) that μ must be ω -inaccessible, i.e. $\rho < \mu$ implies $\rho^{\omega} < \mu$. This and the fact that B is CCC imply that for any subset $A \subset B$ if $|A| < \mu$ then $|\operatorname{gen}(A)| < \mu$ as well, where $\operatorname{gen}(A)$ denotes the *complete* subalgebra of Bgenerated by A. In particular, we always have

$$|\operatorname{gen}(\{b_{\xi}:\xi\in S^n_{\beta}\})| < \mu$$

and

$$|\operatorname{gen}(\{b_{\xi}:\xi\in T^n_{\alpha}\})|<\mu$$

for any $\beta \in \lambda$, $\alpha \in \lambda'$, $n \in \omega$. Consequently, if we let D denote the set of those limit ordinals $\delta \in \lambda$ that satisfy both

$$\{\eta: b_\eta \in \operatorname{gen}(\{b_\xi: \xi \in S^n_\beta\})\} \subset \delta$$

for each $\langle \beta, n \rangle \in \delta \times \omega$ and

$$\{\eta: b_\eta \in \operatorname{gen}(\{b_\xi: \xi \in T^n_\alpha\})\} \subset \delta$$

for all limit ordinals $\alpha \in \delta$ and $n \in \omega$, then D is closed and unbounded in λ .

Let $D = \{\delta_{\nu} : \nu \in \lambda\}$ be the increasing (and continuous) enumeration of D and set for each $\nu \in \lambda$

$$X_{\nu} = \{b_{\xi} : \xi \in \delta_{\nu}\}.$$

We claim that $\{X_{\nu} : \nu \in \lambda\}$ satisfies the conditions of Lemma 3. That it forms an increasing and continuous sequence with B as its union is obvious. To see the rest, it will clearly suffice to show that each X_{ν} is the union of countably many complete subalgebras of B, for (by the inductive hypothesis) they must all be κ -linked.

Here we have to distinguish two cases. First, if $\operatorname{cf}(\delta_{\nu}) = \omega$ then we may choose ordinals $\{\beta_i : i \in \omega\} \subset \delta_{\nu}$ with $\delta_{\nu} = \bigcup \{\beta_i : i \in \omega\}$ and observe that from

$$\beta_i = \bigcup \{ S^n_{\beta_i} : n \in \omega \}$$

and from $\delta_{\nu} \in D$ we have

$$X_{\nu} = \bigcup \{ \operatorname{gen}(\{b_{\xi} : \xi \in S^n_{\beta_i}\}) : \langle n, i \rangle \in \omega^2 \}.$$

Secondly, if $cf(\delta_{\nu}) > \omega$ then we have

$$X_{\nu} = \bigcup \{ \operatorname{gen}(\{b_{\xi} : \xi \in T^n_{\delta_{\nu}}\}) : n \in \omega \}.$$

Indeed, this follows from the fact that if $cf(\delta_{\nu}) > \omega$ then $\alpha, \beta \in C'_{\delta_{\nu}}$ with $\alpha \in \beta$ imply $T^n_{\alpha} \subset T^n_{\beta}$, moreover we also have

$$T^n_{\delta_{\nu}} = \bigcup \{ T^n_{\alpha} : \alpha \in C'_{\delta_{\nu}} \}$$

and

$$\delta_{\nu} = \bigcup \{ T_{\delta_{\nu}}^n : n \in \omega \}.$$

The proof is now completed, since we have shown that Lemma 3 can be applied to $\{X_{\nu} : \nu \in \lambda\}$ and consequently *B* is κ -linked.

Let us recall now the well-known fact that if P is a CCC partial ordering then its completion B is a CCC boolean algebra with $|B| \ge |P|^{\omega}$ (see e.g. [K, II. 3.3]). Consequently we immediately obtain the following equivalent formulation of Theorem 2. **Theorem 2'.** Let $\kappa = \kappa^{\omega}$ and P be a CCC partial ordering such that $|P| \leq 2^{\kappa}$, moreover if $\kappa < \mu < |P|$ and $\operatorname{cf}(\mu) = \omega$ then $\mu^{\omega} = \mu^+$ and \Box_{μ} holds. Then P is κ -linked.

Note that if 2^{κ} is a finite successor of κ , i.e. $2^{\kappa} < \kappa^{+\omega}$, then the latter condition is automatically satisfied.

Now, if \mathcal{G} is any graph and $Q(\mathcal{G})$ is the partial order of finite \mathcal{G} -independent sets (see e.g. [HJSz]) then it is easy to see that $Q(\mathcal{G})$ is κ -linked if and only if it is κ -centered. Consequently, if e.g. $\kappa = \kappa^{\omega}$ and $2^{\kappa} < \kappa^{+\omega}$ and \mathcal{G} is a graph for which $Q(\mathcal{G})$ is CCC and $|\mathcal{G}| \leq 2^{\kappa}$ then $Q(\mathcal{G})$ must be κ -centered. In particular, we obtain the following result which shows that the use of hypergraphs, as opposed to just ordinary graphs, was essential in [HJSz] in producing ZFC examples of CCC partial orders with prescribed centeredness.

Corollary 4. Let $\kappa = \kappa^{\omega} < \lambda < 2^{\lambda} = 2^{\kappa} < \kappa^{+\omega}$. Then there is no CCC partial order P with link $(P) = \lambda$. In particular, there is no graph \mathcal{G} such that $Q(\mathcal{G})$ is CCC and cent $(\mathcal{G}) = \text{cent}(Q(\mathcal{G})) = \lambda$.

PROOF: Assume, indirectly, that $link(P) = \lambda$. Then for the completion B of P we also have $link(B) = \lambda$, hence by Lemma 1 we have $|B| \leq 2^{\lambda} = 2^{\kappa} < \kappa^{+\omega}$. Consequently Theorem 2 applies to B and thus we have

$$\operatorname{link}(B) = \operatorname{link}(P) \le \kappa < \lambda,$$

which is a contradiction.

As a particular case, we get for instance that $2^{\omega} = \omega_1$ and $2^{\omega_1} = 2^{\omega_2} = \omega_3$ imply that there is no CCC partial order of linkedness ω_2 , in particular there is no graph \mathcal{G} for which $Q(\mathcal{G})$ is CCC and cent $(\mathcal{G}) = \omega_2$.

Of course, Corollary 4 remains valid if instead of $2^{\kappa} < \kappa^{+\omega}$ we only assume the weaker condition that $\kappa < \mu < 2^{\kappa}$ and $cf(\mu) = \omega$ imply both $\mu^{\omega} = \mu^{+}$ and \Box_{μ} .

Next we are going to examine the naturally arising question whether condition (*) in Theorem 2 (or the corresponding condition in Theorem 2') is essential. The answer to this question is "yes", and it necessarily involves large cardinals. Indeed, it is well-known that the existence of a cardinal $\mu > 2^{\omega}$ for which $cf(\mu) = \omega$ but either $\mu^{\omega} \neq \mu^+$ or \Box_{μ} fails implies the consistency of e.g. measurable cardinals.

Example 5. If there is supercompact cardinal then it is consistent to have a model W of ZFC in which $2^{\omega} = \omega_1$, $2^{\omega_1} = \omega_{\omega+1} = \lambda$ and there is a graph $\mathcal{G} = \langle \lambda, E \rangle$ of chromatic number ω_2 such that $Q(\mathcal{G})$ is CCC. In particular, we have then that $|Q(\mathcal{G})| = 2^{\omega_1}$ but

$$\operatorname{link}(\mathcal{G}) = \operatorname{cent}(\mathcal{G}) \ge \operatorname{chr}(\mathcal{G}) > \omega_1!$$

PROOF: In [HJSh, 4.6 and 4.7] it was shown that the existence of a supercompact cardinal implies the consistency of GCH with the existence of a stationary set

 $S \subset \lambda$ and a sequence $\langle A_{\alpha} : \alpha \in S \rangle$ such that $\bigcup A_{\alpha} = \alpha$, $tpA_{\alpha} = \omega_1$ and $|A_{\alpha} \cap A_{\beta}| < \omega$ if $\{\alpha, \beta\} \in [S]^2$, moreover that GCH plus the existence of such a sequence $\langle A_{\alpha} : \alpha \in S \rangle$ imply the existence of a graph $\mathcal{G} = \langle \lambda, E \rangle$ such that $\operatorname{chr}(\mathcal{G}) = \omega_2$ and $[\omega, \omega]$ does not embed into \mathcal{G} . A closer look at the proof of 4.7 will reveal that from GCH we only need CH and $\langle \rangle(S)$ to obtain this graph \mathcal{G} . Consequently, if we start with a ground model V satisfying GCH and having the above mentioned stationary set $S \subset \lambda$ of ω_1 -limits and the ω -almost disjoint sequence $\langle A_{\alpha} : \alpha \in S \rangle$ and then we add λ -many Cohen subsets of ω_1 to V, i.e. we set $W = V^{\mathcal{F}n(\lambda;\omega_1)}$, then we have such a graph in the extension W as well.

Indeed, that S remains stationary and CH holds in W are standard. To show that $\Diamond(S)$ will also be valid in W, we can use, in V, $\Diamond(S)$ together with the facts that $\mathcal{F}n(\lambda;\omega_1)$ has the ω_2 -CC and $|\mathcal{F}n(\lambda;\omega_1)| = \lambda = \lambda^{\omega_1}$ to "capture" all nice names of subsets of λ in W (see [K]).

Consequently, we shall be done if we can show that $Q(\mathcal{G})$ is CCC for every graph \mathcal{G} that does not embed the complete bipartite graph $[\omega, \omega]$.

Lemma 6. If $\mathcal{G} = \langle \kappa, E \rangle$ is a graph such that $[\omega, \omega]$ does not embed into \mathcal{G} then $Q(\mathcal{G})$ is CCC.

PROOF: Assume, indirectly, that there is a pairwise incompatible collection $X \in [Q(\mathcal{G})]^{\omega_1}$. By the usual Δ -system and counting arguments we may assume that $X = \{x_\alpha : \alpha \in \omega_1\}$ with $x_\alpha \cap x_\beta = \emptyset$ and $|x_\alpha| = n$ for $\{\alpha, \beta\} \in [\omega_1]^2$. Let $x_\alpha = \{\zeta_i^{(\alpha)} : i \in n\}$.

We can now define a partition

$$p: \omega \times (\omega_1 \setminus \omega) \longrightarrow n \times n$$

such that if $\langle k, \alpha \rangle \in \omega \times (\omega_1 \setminus \omega)$ and $p(k, \alpha) = \langle i, j \rangle$ then $\{\zeta_i^{(k)}, \zeta_j^{(\alpha)}\} \in E$, for this is exactly what the incompatibility of x_k and x_α means. Applying to this partition p the Erdös-Rado polarized partition relation

$$\begin{pmatrix} \omega_1 \\ \omega \end{pmatrix} \longrightarrow \begin{pmatrix} \omega_1, \omega \\ \omega, \omega \end{pmatrix}^{1,1},$$

or rather its easy consequence

$$\begin{pmatrix} \omega_1 \\ \omega \end{pmatrix} \longrightarrow \begin{pmatrix} \omega \\ \omega \end{pmatrix}_{n^2}^{1,1}$$

then yields infinite sets $A \subset \omega$ and $B \subset \omega_1 \setminus \omega$ and a fix pair $\langle i, j \rangle \in n \times n$ such that $\{\zeta_i^{(k)}, \zeta_j^{(\alpha)}\} \in E$ whenever $\langle k, \alpha \rangle \in A \times B$, hence we obtain that $[\omega, \omega]$ embeds into \mathcal{G} , and this is a contradiction.

References

- [EK] Engelking R., Karlowicz M., Some theorems of set-theory and their topological consequences, Fund. Math. 57 (1965), 275–286.
- [HJSh] Hajnal A., Juhász I., Shelah S., Splitting strongly almost disjoint families, Transactions of the AMS 295 (1986), 369–387.
- [HJSz] Hajnal A., Juhász I., Szentmiklóssy Z., Compact CCC spaces of prescribed density, in: Combinatorics, P. Erdös is 80, Bolyai Soc. Math. Studies, Keszthely, 1993, pp. 239–252.
- [K] Kunen K., Set Theory, North Holland, Amsterdam, 1979.
- [S] Shelah S., Remarks on Boolean algebras, Algebra Universalis 11 (1980), 77–89.

A. Hajnal, I. Juhász:

MTA MKI, P.O.Box 127, H-1364 Budapest, Hungary

Z. Szentmiklóssy:

ELTE TTK Analizis TSZ., Muzeum KRT 6-8, H-1088 Budapest, Hungary

(Received October 2, 1996)