Choice principles in elementary topology and analysis

HORST HERRLICH

Karl Peter Grotemeyer, meinem verehrten Lehrer, zum 70. Geburtstag gewidmet

Abstract. Many fundamental mathematical results fail in \mathbf{ZF} , i.e., in Zermelo-Fraenkel set theory without the Axiom of Choice. This article surveys results — old and new — that specify how much "choice" is needed *precisely* to validate each of certain basic analytical and topological results.

Keywords: Axiom of (Countable) Choice, Boolean Prime Ideal Theorem, Theorems of Ascoli, Baire, Čech-Stone and Tychonoff, compact, Lindelöf and orderable spaces

 $\label{eq:classification: 03E25, 04A25, 26A03, 26A15, 54-02, 54A35, 54B10, 54C35, 54D20, 54D30, 54D65, 54E45, 54E50, 54E52$

Introduction

"It is a peculiar fact that all the transfinite axioms are deducible from a single one, the axiom of choice, — the most challenged axiom in the mathematical literature."

David Hilbert (1926)

"A formal system in which $\exists G(x)$ is provable, but which provides no method for finding the x in question, is one in which the existential quantifier fails to fulfill its intended function."

A.H. Goldstein (1968)

"The Axiom of Choice has easily the most tortured history of all the set-theoretic axioms."

Penelope Maddy (1988)

As the above quotes indicate the Axiom of Choice is highly controversial — perhaps the most controversial axiom in all of mathematics. To discuss this issue however is not the purpose of the present note, — see instead the inspiring book by **G.H. Moore (1982)** –, its more modest aim is to demonstrate how much "choice" is needed to make elementary analysis resp. topology click.

The results (all in \mathbf{ZF}) are ordered by their degree of abstractness.

1. In the realm of the reals

We start by observing that several familiar topological properties of the reals are equivalent to each other and to rather natural choice-principles.

Theorem 1.1 ([15], [29], [30]). Equivalent are:

- in ℝ, a point x is an accumulation point of a subset A iff there exists a sequence in A \ {x} that converges to x,
- 2. a function $f: \mathbb{R} \to \mathbb{R}$ is continuous at a point x iff it is sequentially continuous at x,
- 3. a real-valued function $f: A \to \mathbb{R}$ from a subspace A of \mathbb{R} is continuous iff it is sequentially continuous,
- 4. each subspace of \mathbb{R} is separable,
- 5. \mathbb{R} is a Lindelöf space,
- 6. \mathbb{Q} is a Lindelöf space,
- 7. \mathbb{N} is a Lindelöf space,
- 8. each unbounded subset of $\mathbb R$ contains an unbounded sequence,
- 9. the Axiom of Choice for countable collections of subsets of \mathbb{R} .

There exist models of ZF that violate the above conditions ([17], [18]). Observe the fine distinction between conditions 2 and 3 of Theorem 1.1. These may lead one to assume that also the following property is equivalent to the above conditions:

(*) a function $f: \mathbb{R} \longrightarrow \mathbb{R}$ is continuous iff it is sequentially continuous.

However, this would be a serious mistake: (*) holds in **ZF** (without any choiceassumptions) — see [29]. If, however, we consider functions $f: X \longrightarrow \mathbb{R}$ with metric domain we need even more choice than in Theorem 1.1, — see Theorem 2.1.

Proposition 1.2 ([15]). Equivalent are:

1. in \mathbb{R} , every bounded infinite set contains a convergent injective sequence,

2. every infinite subset of \mathbb{R} is Dedekind-infinite.

There exist models of \mathbf{ZF} that violate the above conditions ([18]).

Obviously, the conditions of Theorem 1.1 imply the conditions of Proposition 1.2.

Is the converse true?

Observe that the following slight modifications of condition 1 in Proposition 1.2 hold in ${\bf ZF}:$

- (a) in \mathbb{R} , every bounded countable set contains a convergent injective sequence,
- (b) in $\mathbb R,$ for every bounded infinite set there exists an accumulation point.

2. In the realm of pseudometric spaces

In this section we consider (pseudo)metric spaces and various compactness-notions for them.

Theorem 2.1 ([4], [15]). Equivalent are:

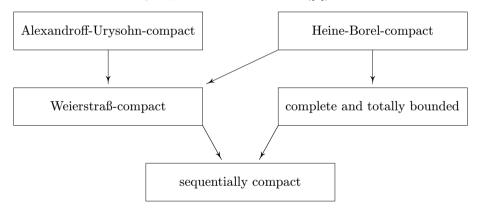
- 1. every separable pseudometric space is a Lindelöf space,
- 2. every pseudometric space with a countable base is a Lindelöf space,
- 3. the Axiom of Choice for countable collections of subsets of \mathbb{R} .

Definition 2.2. A pseudometric space \mathbf{X} is called

- 1. Heine-Borel-compact provided every open cover of \mathbf{X} contains a finite one,
- 2. Weierstraß-compact provided for every infinite subset of \mathbf{X} there exists an accumulation point,
- 3. *Alexandroff-Urysohn-compact* provided for every infinite subset of **X** there exists a complete accumulation point,
- 4. sequentially-compact provided every sequence in ${\bf X}$ has a convergent subsequence.

Under the Axiom of Choice the above compactness concepts are equivalent. This is no longer the case in **ZF**.

However the following implications remain valid ([4]):



Theorem 2.3 ([4]). Equivalent are:

- 1. Weierstraß-compact \Leftrightarrow sequentially compact,
- 2. finite \Leftrightarrow Dedekind-finite.

Theorem 2.4 ([4], [14]). Equivalent are:

- 1. in a (pseudo)metric space X, a point x is an accumulation point of a subset A iff there exists a sequence in $A \setminus \{x\}$ that converges to x,
- 2. a real-valued function $f: \mathbf{X} \to \mathbb{R}$ from a (pseudo)metric space is continuous iff it is sequentially continuous,
- 3. a function between (pseudo)metric spaces is continuous iff it is sequentially continuous,
- 4. subspaces of a separable pseudometric spaces are separable,

- 5. totally bounded pseudometric spaces are separable,
- 6. Heine-Borel-compact pseudometric spaces are separable,
- 7. separable \Leftrightarrow countable base,
- 8. separable \Leftrightarrow Lindelöf,
- 9. separable \Leftrightarrow topologically totally bounded,
- 10. Heine-Borel-compact \Leftrightarrow sequentially compact,
- 11. Heine-Borel-compact \Leftrightarrow complete and totally bounded,
- 12. sequentially compact \Leftrightarrow complete and totally bounded,
- 13. Weierstraß-compact \Leftrightarrow complete and totally bounded,
- 14. complete \Leftrightarrow each Cauchy-filter converges,
- 15. the Baire Category Theorem for complete, totally bounded pseudometric spaces,
- 16. the Baire Category Theorem for complete pseudometric spaces with countable base,
- 17. the Axiom of Countable Choice.

Observe that the Baire Category Theorem for complete, separable pseudometric spaces holds in **ZF**. However, the role of the Baire Category theorem for all complete pseudometric spaces is not yet clear:

The Axiom of Dependent Choices implies the Baire Category Theorem for complete pseudometric spaces, and the latter implies the Axiom of Countable Choice.

Is one of these implications an equivalence?

Theorem 2.5 ([4], [10]). Equivalent are:

- 1. Alexandroff-Urysohn-compact \Leftrightarrow Heine-Borel-compact,
- 2. Alexandroff-Urysohn-compact \Leftrightarrow Weierstraß-compact,
- 3. Alexandroff-Urysohn-compact \Leftrightarrow sequentially compact,
- 4. the Axiom of Choice.

3. In the realm of topological spaces

Finally, we consider arbitrary topological spaces and various familiar compactness notions there — all equivalent under the Axiom of Choice.

Definition 3.1. A topological space \mathbf{X} is called

- 1. Heine-Borel-compact provided every open cover of \mathbf{X} contains a finite one,
- 2. *Alexandroff-Urysohn-compact* provided for every infinite subset of **X** there exists a complete accumulation-point,
- 3. Bourbaki-compact provided every ultrafilter converges in X,
- 4. Comfort-compact provided **X** is homeomorphic to a closed subspace of $[0,1]^I$ for some I.

Theorem 3.2([15]). Equivalent are:

- 1. every topological space with a countable base is a Lindelöf space,
- 2. the Axiom of Choice for countable collections of subset of the reals.

Theorem 3.3 ([1], [3], [10], [13], [14], [21], [32]). Equivalent are:

- 1. the Tychonoff Theorem for Heine-Borel-compact spaces,
- 2. the Tychonoff Theorem for Alexandroff-Urysohn-compact spaces,
- 3. the Čech-Stone Theorem¹ for Alexandroff-Urysohn-compactness,
- 4. the Ascoli-Theorem for Alexandroff-Urysohn-compactness,
- 5. products of spaces with finite topologies are Heine-Borel-compact,
- 6. products of spaces with finite topologies are Alexandroff-Urysohncompact,
- 7. products of finite discrete spaces are Alexandroff-Urysohn-compact,
- 8. spaces with finite topologies are Alexandroff-Urysohn-compact,
- 9. finite products of Alexandroff-Urysohn-compact spaces are Alexandroff-Urysohn-compact,
- 10. finite coproducts of Alexandroff-Urysohn-compact spaces are Alexandroff-Urysohn-compact,
- 11. Heine-Borel-compact \Leftrightarrow Alexandroff-Urysohn-compact,
- 12. Bourbaki-compact \Leftrightarrow Alexandroff-Urysohn-compact,
- 13. Comfort-compact ⇔ Alexandroff-Urysohn-compact and completely regular,
- 14. the Axiom of Countable Choice and every closed filter is contained in a maximal one,
- 15. the Axiom of Choice.

The Axiom of Dependent Choices implies the Tychonoff Theorem for countable collections of Heine-Borel-compact spaces, and the latter implies the Axiom of Countable Choice ([7]). Is one of these implications an equivalence? It is known however that the Axiom of Countable Choice does not imply the Axiom of Dependent Choices ([20]).

Theorem 3.4 ([2], [3], [10], [12], [14], [22], [25], [28]). Equivalent are:

- 1. the Tychonoff Theorem for Heine-Borel-compact Hausdorff spaces,
- 2. the Čech-Stone Theorem¹ for Heine-Borel-compactness,
- 3. the Ascoli-Theorem for Heine-Borel-compactness,
- 4. the Ascoli-Theorem for Bourbaki-compactness,
- 5. the Ascoli-Theorem for Comfort-compactness,
- 6. products of finite spaces are Heine-Borel-compact,
- 7. Heine-Borel-compact \Leftrightarrow Bourbaki-compact,
- 8. Heine-Borel-compact and completely regular \Leftrightarrow Comfort-compact,
- 9. every z-filter is fixed \Leftrightarrow every z-ultrafilter is fixed,
- 10. in the ring C(X), every ideal is fixed iff every maximal ideal is fixed,

¹The Čech-Stone Theorem states that compact Hausdorff spaces form an epireflective subcategory of the category of Hausdorff spaces and continuous maps (i.e., that for every Hausdorff space X there exists a compact Hausdorff space βX and a continuous dense map $r: X \longrightarrow \beta X$ such that for every compact Hausdorff space Y and every continuous map $f: X \longrightarrow Y$ there exists a continuous map $\bar{f}: \beta X \longrightarrow Y$ with $f = \bar{f} \circ r$).

- 11. in the ring $C^*(X)$, every ideal is fixed iff every maximal ideal is fixed,
- 12. every filter is contained in an ultrafilter,
- 13, every zero-filter is contained in a maximal one,
- 14. the Boolean Prime Ideal Theorem.

The Boolean Prime Ideal Theorem is known to be properly weaker than the Axiom of choice [9]. This is a deep result, but the gap — surprisingly — is even wider. The Boolean Prime Ideal Theorem together with the Axiom of Countable Choice (or even with the Axiom of Dependent Choices) is properly weaker than the Axiom of Choice ([26]).

Theorem 3.5([10]). Equivalent are:

- 1. the Tychonoff Theorem for Bourbaki-compact spaces,
- 2. either the Axiom of Choice or all ultrafilters are fixed.

This result is particularly surprising and rather strange indeed, since the two parts of condition 2 are rather far apart. The second part is not void, as one might suspect, since there exist models of \mathbf{ZF} with no free ultrafilters ([5]).

Proposition 3.6 ([10]). Equivalent are:

- 1. Alexandroff-compactifications of discrete spaces are Alexandroff-Urysohn-compact,
- 2. finite \Leftrightarrow Dedekind-finite.

The condition "finite \Leftrightarrow Dedekind-finite" of the above proposition is properly weaker than the Axiom of Countable Choice ([19]). This is perhaps not surprising, but rather hard to prove.

Theorem 3.7 ([7], [31]). Equivalent are:

- 1. Urysohn's Lemma for orderable² spaces,
- 2. Tietze-Urysohn's Extension Theorem for orderable² spaces,
- 3. orderable² spaces are normal,
- 4. orderable² spaces are collectionwise normal,
- 5. orderable² spaces are collectionwise Hausdorff,
- 6. orderable² spaces are monotonically normal,
- 7. completely orderable² spaces are hereditarily normal,
- 8. the Axiom of Choice for collections of pairwise disjoint convex open subsets of some completely ordered² set,
- the Axiom of Choice for the collection of all non-empty convex subsets of some completely ordered² set.

Let us sum things up: Topology with "choice" may be as unreal as a soapbubble dream, but topology without "choice" is as horrible as nightmare.

²Here order means linear order.

References

- Alas O.T., The Axiom of choice and two particular forms of Tychonoff theorem, Portugal. Math. 28 (1968), 75–76.
- [2] Banaschewski B., Compactification and the axiom of choice, unpublished manuscript, 1979.
- [3] Bentley H.L., Herrlich H., Compactness and rings of continuous functions without the axiom of choice, to appear.
- [4] Bentley H.L., Herrlich H., Countable choice and pseudometric spaces, to appear.
- [5] Blass A., A model without ultrafilters, Bull. Acad. Sci. Polon., Sér. Sci. Math. Astr. Phys. 25 (1977), 329–331.
- [6] Comfort W.W., A theorem of Stone-Čech type, and a theorem of Tychonoff type, without the axiom of choice; and their realcompact analogues, Fund. Math. 63 (1988), 97–110.
- [7] Good C., Tree I.J., Continuing horrors of topology without choice, Topol. Appl. 63 (1995), 79–90.
- [8] Goodstein R.L., Existence in Mathematics, in: Logic and Foundations of Mathematics (eds. D. van Dalen et al.), Wolters-Noordhoff Publ. Co., 1968, pp. 70–82.
- [9] Halpern J.D., Lévy A., The Boolean prime ideal theorem does not imply the axiom of choice, Proc. of Symposium Pure Math. of the AMS 13 (1971), Part I, 83–134.
- [10] Herrlich H., Compactness and the Axiom of Choice, Appl. Categ. Structures 4 (1996), 1-14.
- [11] Herrlich H., An effective construction of a free ultrafilter, Papers on Gen. Topol. Appl. (eds. S. Andima et al.), Annals New York Acad Sci. 806 (1996), 201–206.
- [12] Herrlich H., The Ascoli Theorem is equivalent to the Boolean Prime Ideal Theorem, to appear.
- [13] Herrlich H., The Ascoli Theorem is equivalent to the Axiom of Choice, to appear.
- [14] Herrlich H., Steprāns J., Maximal filters, continuity and choice principles, to appear in Quaestiones Math. 20 (1997).
- [15] Herrlich H., Strecker G.E., When in N Lindelöf?, to appear in Comment. Math. Univ. Carolinae 38 (1997).
- [16] Hilbert D., Über das Unendliche, Mathem. Annalen 95 (1926), 161–190.
- [17] Jaegermann M., The Axiom of Choice and two definitions of continuity, Bull. Acad. Polon. Sci, Sér. Sci, Math., Astr. et Phys. 13 (1965), 699–704.
- [18] Jech T., Eine Bemerkung zum Auswahlaxiom, Časopis Pěst. Mat. 93 (1968), 30–31.
- [19] Jech T.J., The Axiom of Choice, North Holland, Amsterdam, 1973.
- [20] Jensen R.B., Independence of the Axiom of Dependent Choices from the Countable Axiom of Choice, J. Symb. Logic 31 (1966), 294.
- [21] Kelley J.L., The Tychonoff product theorem implies the axiom of choice, Fund. Math. 37 (1950), 75–76.
- [22] Loś J., Ryll-Nardzewski C., Effectiveness of the representation theory for Boolean algebras, Fund. Math. 41 (1955), 49–56.
- [23] Maddy P., Believing the axioms I., J. Symb. Logic 53 (1988), 481-511.
- [24] Moore G.H., Zermelo's Axiom of Choice. Its Origins, Developments and Influence, Springer, New York, 1982.
- [25] Mycielski J., Two remarks on Tychonoff's product theorem, Bull. Acad. Polon. Sci. Sér. Sci. Math., Astr. Phys. 12 (1964), 439–441.
- [26] Pincus D., Adding Dependent Choice to the Boolean Prime Ideal Theorem, Logic Colloq. 76 (1977), 547–565.
- [27] Rubin H., Rubin J.E., Equivalents of the Axiom of Choice II., North Holland, Amsterdam, 1985.
- [28] Rubin H., Scott D., Some topological theorems equivalent to the Boolean prime ideal theorem, Bull. Amer. Math. Soc. 60 (1954), 389.
- [29] Sierpiñski W., Sur le rôle de l'axiome de M. Zermelo dans l'Analyse moderne, Compt. Rendus Hebdomadaires des Sēances de l'Academie des Sciences, Paris 193 (1916), 688– 691.

H. Herrlich

- [30] Sierpiñski W., L'axiome de M. Zermelo et son rôle dans la théorie des ensembles et l'analyse, Bull. Acad. Sci. Cracovie, Cl. Sci. Math., Sér. A (1918), 97–152.
- [31] Douwen E.K., Horrors of topology without AC: a nonnormal orderable space, Proc. Amer. Math. Soc. 95 (1985), 101–105.
- [32] Ward L.E., A weak Tychonoff theorem and the axiom of choice, Proc. Amer. Math. Soc. 13 (1962), 757–758.

UNIVERSITY OF BREMEN, FB 3, P.O. BOX 330440, 28334 BREMEN, GERMANY *E-mail*: herrlich@informatik.Uni-Bremen.de

(Received April 3, 1997, revised June 5, 1997)