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Separation of (n + 1)-families of
sets in general position in R"

MIRCEA BALAJ

Abstract. In this paper the main result in [1], concerning (n + 1)-families of sets in
general position in R"™, is generalized. Finally we prove the following theorem: If
{A1, A2, ..., Ap41} is a family of compact convexly connected sets in general position in
R™, then for each proper subset I of {1,2,...,n + 1} the set of hyperplanes separating
U{A; : 4 € I} and U{A; : j € T} is homeomorphic to Sl .
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1. Introduction

In this paper we continue the investigation of a previous article [1], regarding
the separability of the members of an (n + 1)-family of sets in general position
in R™. In the beginning we recall some definitions and notations.

A family A of sets in R" is said to be in general position if any m-flat, 0 < m <
n — 1, intersects at most m + 1 members of A. Let m = min{n + 1, card A}. It is
easy to see that the family .4 is in general position if and only if for every choice of
sets Ay, As, ..., Am € A and every choice of points x1 € Ay, 29 € Ag,...,xym €
A, the set {21,29,...,2y} is affinely independent.

A set A C R" is called (cf.[5] and [8, p.174]) convexly connected if there is no
hyperplane H such that H N A = () and A contains points in both open halfspaces
determined by H.

If A is a compact set and H a hyperplane in R", then the distance between A
and H is defined to be d(A, H) = min{|jz —y||: x € A, ye H}. f H = {z €
R™ : (z,b) = A} is a hyperplane, the corresponding closed halfspace {x € R" :
(2,0) <A}, {x € R™: (2,b) > A} are denoted respectively by HS, HZ. A set A
is said to be separated from a set B by the hyperplane H provided that A lies in
one of the closed halfspaces HS, HZ and B lies in the other. The set A is strictly
separated from B by H provided that the separating hyperplane H is disjoint
from both A and B. If A is a family of sets containing at least two members, we
say that a hyperplane H separates the members of A if there exists a nontrivial
partition (B,C) of A such that UB c HS, UC C HZ.
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The unit sphere in R"*! and the set {z = (z1,22,...,2n41) : |z]| =1, ; >0,
1 < i < n+ 1} are denoted by Sp, S, respectively. For every subset I of

{1,2...,n+ 1}, T denotes the complement of I in {1,2,...,n+ 1}.
In [1] among other results we have obtained the following

Theorem 1. Let {A1, Aa, ..., Ap11} be a family of compact convexly connected
sets in general position in R™. Then

(i) for each proper subset I of {1,2,...,n+ 1}, there exists exactly one hy-
perplane H such that

(1) H separates strictly the sets U{A;:i€ I}, U{A;:j €T}
and
(2) d(Ar, H) = d(Ag, H) = - -+ = d(An41, H);
(ii) there exist exactly 2™ — 1 hyperplanes satisfying (2).

In this paper we obtain a generalization of the previous result. Also, we prove
that for every nontrivial partition (B,C) of an (n + 1)-family of compact convexly
connected sets in general position in R™, the set of hyperplanes separating U3
and UC is homeomorphic to S, .

2. Basic results
We start with the following result which generalizes Lemma 3 in [1].

Lemma 2. Let [x1,x2,...,2n+1] be an n-simplex in R™. Then for each o =
(a1,09,...,ap+1) € S, and for each proper subset I of {1,2,...,n+ 1} there
exists exactly one hyperplane H such that

3) H separates the sets {z; :i € I} and {z;:j €I},
(4) d(x;, H) = ko for some k and all i, 1<i<n+1.

PRrOOF: The distance from an arbitrary point xg to a hyperplane

(5) H={xeR": (x,b) =)}
is given by the Ascoli’s formula (see [6, p. 21])
(©) dtoo 1) = 120 =2

Since the pair (b,\) € (R™\ {0}) x R for which the hyperplane H admits
the representation (5) is unique up to a non-zero multiplicative constant, the
conditions (3) and (4) are equivalent with

(7) (xib) =A=0;, 1<i<n+1
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o, if iel,
ﬁi—{ !

—ay, if iel.

where

Denoting by (2;1, %9, ..., i) the coordinates of z;, 1 < i < n+ 1, and by
(b1,b2,...,by) the coordinates of b, we are lead to an (n + 1) X (n + 1) linear
system

(8) zi1b1 + xigby 4+ -+ Tipbp — A =06, 1<i<n+1.

From the affine independence of the points x1,z2,...,Zn4+1, it follows that
the determinant D of order n + 1 having the general row (1,52, ...,Tin, 1) is
different from zero. This proves that the system (8) possesses the unique solution

b =2 1<j<n
A= Lo

9)

where Dj is the determinant of order n + 1 having the general row (z;1, 22, ...,
%351, 84 Tij41,- -+, Tin, 1) and Dy is the determinant of the same order, with
the general row (241, . .., Zin, 5;). Since at least two ; are distinct, from (7) it can
be easily deduced that b # 0. All these show that there exists a unique hyperplane
H which satisfies the conditions (3) and (4). Note that d(x;, H) = ﬁJ‘TZ” and that

the points z;, i € I, lie in the closed halfspace H=, while the points x4, € 1, lie
in H<. O
Let a point g lie on the surface ;" with all coordinates equal. The proof of

the following lemma repeats the previous proof (taking I = {1,2,...,n+ 1}).

Lemma 3. Let A = [x1,%9,...,Zn+1] be an n-simplex in R™. Then for every
a = (a1,a2,...,an41) € S\ {ag} there exists exactly one hyperplane H such
that

(i) the simplex A is contained in one of the closed half-spaces determined by
H, and
(ii) d(z;, H) = kay for some k and all i, 1 <i <n+ 1.
The following generalization of Theorem 1 is our main result.

Theorem 4. Let {A1, Aa, ..., Apt1} be a family of compact convexly connected
sets in general position in R™. Then

(i) for each o = (a1, a2,...,an41) € S;7 and for each proper subset I of
{1,2,...,n+ 1} there exists exactly one hyperplane H such that

(10) H separates the sets U{A;:i €I} and U{A;:je I}
and

(11) d(A;,H) = ka; for some k and all i, 1<i<n+1;
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(i) if for each o € S, N(«) denotes the number of the hyperplanes H satis-
fying (11), then
Vo= {Z, Teesie)
2" — 1, if o= .

PROOF: (i) A similar argument to that used in proving Corollary 7 in [1] permits
us to suppose the compact sets A; being convex. Let A = A1 X Ag X -+ X Ap41.
The elements of A are denoted by Z,7,... . Let I be an arbitrary fixed proper
subset of {1,2,...,n + 1}. By Lemma 2, for each T = (x1,22,...,2p+1) € 4,
(z; € A;, 1 <i <n+1) there exists a unique hyperplane, denoted by H(T), such
that

(12) d(x;, H(T)) = kay for some k (dependent on T) and all i, 1 <i<n-+1,

{x; i €I} ¢ HZ(Z) and {z; : j € I} C HS(T). The equation of H(T) is
(x,b) = A, where b = (b1,b2,...,bp) € R™\ {0} and A € R are given by the
formulas (9).

We define the map f : A — 24 by f(Z) = Py(T) x Po(T) X --- X Ppi1(T), T € A
and P;(T) defined by

{ (a) Pi(T) ={x € A;: (x,b) = min{{y,b) : y € A;}}, 1€l

(13) (b) Pi(T) ={x € A;: (x,b) =max{(y,b) : y € A;}}, iel.

Since the sets A; are compact, the sets P;(T) are nonempty. If y; € P;(T), 1 <i <
n+ 1, then P;(T) coincides with the intersection of the set A; with the hyperplane
through y; parallel to H(Z). Thus each P;(T) is a compact convex set, and f(T)
is a compact convex set for each T € A. Using Lemma 4 in [1] it can be easily
verified that f is upper semicontinuous.

By the Fan-Glicksberg-Kakutani fixed point theorem (see [2] and [4]), there is
a point Z = (21,22,...,2n41) € A such that Z € f(Z). Let (z,0°) — A% = 0 be
the equation of the hyperplane H (%), with b = (b9,59,...,b9) and A given by
the formulas (9). For each i € I, z; € HZ(Z) and by definition of f, z; € P;(%).
Thus, we infer from (13a) that 4; C HZ(Z) for all i € I.

Then, for each i € I, we have

0y _ 0 . 0y O

d(A;, H(Z)) = min {% z€ Ai} = % = d(z, H(Z)).

In a similar manner, we obtain that A; C H=<(%) and d(A;, H(?)) = d(z;, H(Z)),
for all j € I. Therefore H(Z) separates the sets U{4; : i € I}, U{A; : j € T}
and by (12) the sets {d(Ay, H(2)). d(Ag, H(Z). ... d(Ans1. HE)}, (a1 a2, .
Qp+1} are proportional.
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In the second part of the proof we verify the uniqueness of the hyperplane H
which satisfies (10) and (11), for an arbitrary fixed set of indices I.

By the way of contradiction, suppose that there exist two distinct hyperplanes
H ={zeR": (z,b)) =N =0}, H' = {z € R" : (z,V") — N = 0} satisfying
(10) and (11). For each ¢ € {1,2,...,n+ 1} let 2} and 2/ be points in A; such
that d(A;, H') = d(«}, H'), d(A;, H") = d(z, H"). Then, for a convenient choice
of the pairs (v, \), (b, \") we have

1) (a) min{(z, ) =N :ze A} =@, V)-N=u if iel,
(b) max{(x,b/>—)\/:x€Aj}:(x;-,b/)—)\/:—aj if iel
and
(15) (a) min{(z,b") =Xz e A} = (@ V) - N = if iel,
(b) max{(z,b") = N2z € A;} = (2],0") = X' = —a if iel.

Then, for each i € I, by (14a) and (15a) it follows that (z}, b’ —b")+ X' =X <0
and (z/,b' = b") + X — X > 0. Obviously H' and H” cannot be parallel, hence
b # V'. The convexity of A; implies that the hyperplane H = {x € R" :
(x, ' =b")+ X" =X = 0} intersects all sets A;, i € I. Using a similar argument we
obtain that H intersects all sets A;, j € 1. Therefore H intersects each member
of the family {A1, A, ..., Ap11} which is in general position. The contradiction
obtained completes the proof.

(ii) From (i) we deduce that there exist exactly 2™ —1 hyperplanes which satisfy
(11) and separate the members of the family {41, Ag,..., Apnt1}-

N(ap) = 2™ —1 is the assertion (ii) in Theorem 1. If a € S, \ {ap}, arguing as
above, Lemma 3 yields a unique hyperplane which leaves all sets A; on the same
side and which satisfies (11). O

Let {A1,Ag,..., An+1} be a family of compact convexly connected sets in
general position in R™. For each proper subset I of {1,2,...,n+1} let H(I) denote
the set of hyperplanes which separate the sets U{4; : i € I} and U{A; : j € I}.
To each hyperplane H € H(I) there corresponds a unique point (b, \H) =
(oI b8 b AT € S, such that H = {z € R™ : (2,bM) = M} and U{4; :
i € I} € HZ. This correspondence permits to identify H(I) with a subset of Sy,
namely {(b7, M) : H € H(I)}.

The following known results are needed in the proof of Theorem 7.

Lemma 5 [7, Theorem 1]. If M is a compact convex set in R™, then the function
h: R™ — R defined by h(b) = max{(z,b) : x € M} is continuous.

Lemma 6 [3, p.207, Lemma 3]. Let X and Y be topological spaces, X com-
pact and Y separated. If f : X — Y is a continuous bijection, then f is a
homeomorphism.
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Theorem 7. Let {A1, Aa, ..., Apt1} be a family of compact convexly connected
sets in general position in R™. Then for every proper subset I of {1,2,...,n+1}
the sets H(I) and S;' are homeomorphic.

PROOF: Let I be a proper subset of {1,2,...,n 4 1} arbitrarily fixed. Define
foHU) — S by f(H) = pgerpdy, where dy = (d(A1, H),d(A2, H),...
d(Ap+1,H)). By Theorem 4, f is a bijection. By Lemma 5, each component
of f is continuous, hence f is continuous too. Then, taking into account the
quoted identification, H(I) = f~1(S;F) is a closed subset of the compact set Sy,.
So H(I) is compact and the assertion of Theorem 7 follows now from Lemma 6.

(]

Remark. Theorems 4 and 7 can be reformulated obtaining analogous informa-
tions about the hyperplanes which strictly separate the members of the family
{A1,As, ..., Ap11}. For instance we have:

Let {A1,Ag,..., Ant+1} be a family of compact convexly connected sets in
general position in R™. Then for each proper subset I of {1,2,...,n+1} the set of
hyperplanes strictly separating U{A; : i € I} and U{A; : j € I} is homeomorphic
to {(a1,09,...,0n41) € Sp:a; >0,1<i<n+1}.
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