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Combined finite element–finite volume method

(convergence analysis)

Mária Lukáčová-Medviďová

Abstract. We present an efficient numerical method for solving viscous compressible
fluid flows. The basic idea is to combine finite volume and finite element methods
in an appropriate way. Thus nonlinear convective terms are discretized by the finite
volume method over a finite volume mesh dual to a triangular grid. Diffusion terms are
discretized by the conforming piecewise linear finite element method.
In the paper we study theoretical properties of this scheme for the scalar nonlinear

convection-diffusion equation. We prove the convergence of the numerical solution to

the exact solution.
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1. Introduction

There is a wide range of literature devoted to the convection-diffusion equation,
e.g. [1], [8], [13], [16], [17].
This problem is interesting since it can be considered as a simplified model for

compressible Navier-Stokes equations.
An efficient method for compressible Navier-Stokes equations should be based

on a good solver for inviscid compressible flows (see, e.g., [5], [6], [9], [10], [11],
[12], [21]). We proposed a splitting finite element–finite volume method, in which
the inviscid part of the Navier-Stokes system, i.e. the Euler equations, is solved
by the finite volume method, and the rest viscous part, i.e. the pure diffusion
system, is solved by the finite element method. Some computational results are
presented in [7], [14].
In this paper we present a theoretical analysis of the combined finite element-

finite volume method for a scalar nonlinear convection-diffusion problem. In fact,
we combine the P1-conforming finite element method with an upstream discretiza-
tion of convective term. This upwind discretization takes into account the domi-
nated influence of the convective term in the case of a higher Reynolds number,
and it is viewed as a finite volume discretization of the convective term.
The method of upstream type was applied by Ohmori and Ushijima [16] in

the case of the linear stationary convection-diffusion equation and extended to
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the stationary Navier-Stokes equations by Tobiska and Schieweck in [18], see also
[20]. Both results are based on the nonconforming finite element method.
The main results of this paper is the convergence of the combined finite element-

finite volume method to the exact solution of the convection-diffusion problem.
Let us note that in [8] the authors studied a similar problem under other assump-
tions on the initial data and the mesh. In our result we need less regularity of
the initial data and do not need the triangulation of weakly acute type as in [8].
On the other hand we assume that the initial data are small in some sense (cf.
4.48 (i)).

2. Continuous problem

Let Ω ⊂ R2 be a bounded domain with a Lipschitz continuous boundary. We
are dealing with the nonlinear convection-diffusion problem:
Find u : QT = Ω× (0, T )→ R, such that

∂u

∂t
+ div(v(u) · u) = ν∆u in QT ,(2.1)

u = 0 on ∂Ω× [0, T ],(2.2)

u(·, 0) = u0 in Ω.(2.3)

Here T is a specified time, 0 < T < ∞; the parameter ν = const. > 0 represents
the viscosity coefficient. The nonlinear character of the problem is described by
the given vector of velocity v : R → R2 of the motion of quantity u. We will
assume some growth condition for v = v(u).

Assumption 2.4. We will assume that the function v ∈ C1
(

R;R2
)

has the
following properties:

(i) ∃V1 > 0 |vi(u)| ≤ V1|u|,

(ii) ∃V2 > 0
∣

∣

∣

∣

dvi(u)

du

∣

∣

∣

∣

≤ V2, for all u ∈ R and i = 1, 2.

We suppose that the reader is familiar with Sobolev spacesW p,q(Ω), Lebesgue
spaces Lp(Ω), and Bochner spaces Lp(X ;W (Ω)), 1 ≤ p, q,m, n ≤ ∞, X is a
measurable set. Let us denote V = W

1,2
0 (Ω) and the scalar product in V and

L2(Ω) by

((u, v)) :=

∫

Ω
grad u · grad v, u, v ∈ V,(2.5)

(u, v) :=

∫

Ω
uv, u, v ∈ L2(Ω),(2.6)
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respectively, and the norm in V and L2(Ω) by ‖ · ‖ and | · |, respectively. Further,
let V ′ be the dual space to V and 〈·, ·〉 be the symbol of duality between V and V ′.
As usual, to simplify notation we use the summation convention over repeated
indices.

Now we define the concept of the weak solution of the nonlinear convection-
diffusion problem (2.1)–(2.3).

Definition 2.7. Assume u0 ∈ V . A function u ∈ L2
(

(0, T ) ;V
)

∩ L∞
(

(0, T );

L2 (Ω)
)

is said to be a weak solution of the problem (2.1)–(2.3), iff

(i)
d

dt

∫

Ω
uϕ + ν ((u, ϕ)) =

∫

Ω
vi (u) u

∂ϕ

∂xi

holds for all ϕ ∈ V and in the sense of distributions on (0, T ),

(ii) u (0) = u0.

We will use a suitable notation for the nonlinear term:

(2.8)

b (u, ϕ) : V × V → R s.t.

b (u, ϕ) =

∫

Ω
vi (u)u

∂ϕ

∂xi
dx.

This form has the following property.

Lemma 2.9. There exists a constant d1 > 0 such that

|b (u, ϕ) | ≤ V1d1|u| · ‖u‖ · ‖ϕ‖ ∀u, ϕ ∈ V.

Proof: Using the Hölder inequality we can estimate

|b (u, ϕ)| =
∣

∣

∣

∣

∫

Ω
vi (u)u

∂ϕ

∂xi

∣

∣

∣

∣

≤ V1‖u‖L4(Ω)‖u‖L4(Ω)‖ϕ‖.

Now we use the following fact (see, e.g., [19])

‖u‖L4(Ω) ≤ 21/4 · |u|1/2 · ‖u‖1/2 for all u ∈ V.

Hence,
∣

∣

∣

∣

∫

Ω
vi (u)u

∂ϕ

∂xi

∣

∣

∣

∣

≤ V1d1|u| · ‖u‖ · ‖ϕ‖, where d1 =
√
2.

�

Using a standard approach by the Galerkin method and apriori estimates
(see, e.g., [19]) one obtains the existence and uniqueness result for the weak
solution under the assumption on small initial data u0. Moreover, it holds
u ∈ C([0, T ];L2(Ω)) and u′ ∈ L2((0, T );V ′).
However, if u0 ∈ L∞(Ω), then the existence and uniqueness of the weak solution

u ∈ L2((0, T );V ) ∩ L∞(QT ) is obtained without smallness of u0 (see, e.g., [15]).
Assuming that the data, i.e. Ω, u0, v, are sufficiently regular, e.g. from C2, the
classical solution u ∈ C2(QT ) of the problem (2.1)–(2.3) exists ([2]).
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3. Discrete problem

We assume that the convection-diffusion problem (2.1)–(2.3) will be numeri-
cally solved in Ω̄× [0, T ]; Ω ⊂ R2 is a polygonal domain. By Th we will denote a
triangulation of Ω with the following properties: Th = {Ti}i∈II; II ⊂ {1, 2, . . .} is
an index set, Ti are closed triangles and

(3.1)

(a) Ω̄ =
⋃

i∈II

Ti

(b) if T1, T2 ∈ Th, then T1 ∩ T2 = ∅,
or T1 and T2 have a common side,

or T1 and T2 have a common vertex.

The triangulation Th is called a basic mesh. We suppose the following regularity
assumption for the mesh.

Assumption 3.2. The family of {Th}h∈(0,h0)
, h0 > 0, is assumed to be regular,

i.e.

(i) ∃ c > 0 hi

ρi
≤ c, i ∈ II.

Here hi = diamTi, ρi = diamBi, where Bi is the largest ball contained in Ti,
i ∈ II, h = max

i∈II
hi, and h ∈ (0, h0).

The inverse assumption holds for the family {Th}h∈(0,h0)
, h0 > 0, i.e.

(ii) ∃ c > 0 ∀h ∈ (0, h0) ∀ i ∈ II h

hi
≤ c.

Moreover, besides a triangular partition of Ω, the basis for the finite element
approximation, we will also use a dual finite volume partition of Ω, which will be a
basis for the finite volume approximation of convective term. Let Ph = {Pj ; j ∈ J}
be the set of all vertices of the triangulation Th, h ∈ (0, h0), J ⊂ {1, 2, . . .} is an
index set. The dual finite volume Dj associated with a vertex Pj ∈ Ph is a
closed polygon obtained in the following way: We join the centre of gravity of
each triangle Ti ∈ Th that contains the vertex Pj with the centre of each side of
Ti containing Pj . If Pk ∈ Ph ∩∂Ω, then we complete the obtained contour by the
straight segments joining Pk with the centres of boundary sides that contain Pk.
In this way we get the boundary ∂Dk of the finite volume Dk (see Figure 1). We
introduce a dual mesh Dh = {Dj |j ∈ J}.



Combined finite element–finite volume method (convergence analysis) 721

A
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Dℓ
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Dj

Pk

Dk

Figure 1

If for two different finite volumes Dj , Dℓ their boundaries contain a common
straight segment, we call them neighbours and write ∂Djℓ = ∂Dj ∩ ∂Dℓ. The set
∂Djℓ consists either of two straight segments (if Dj or Dℓ ⊂ Ω) or of one straight
segment (if Dj and Dℓ are adjacent to ∂ Ω) (see Figure 1). We will work with the
following notation:

s(j) := the set of indices of neighbours of the dual volume Dj , j ∈ J ,
H := the set of indices of boundary dual volumes Dj , i.e. ∂Dj ∩ ∂Ω 6= ∅,

H ⊂ J,
γ(j) := the set of indices of boundary edges of Dj , j ∈ H , γ(j) ∩ s(j) = ∅
S(j) := s(j) for j ∈ J \H ; S(j) := s(j) ∪ γ(j) for j ∈ H ,
∂Dj =

⋃

ℓ∈S(j) ∂Djℓ,

njℓ = (nxjℓ, nyjℓ) . . . the unit outer normal to ∂Dj restricted to ∂Djℓ,
j ∈ J, ℓ ∈ S(j).

Moreover, we will denote by Sjℓ the sector of the dual volume Dj “belonging”
to vertex Pℓ. See Figure 2.

A
Pj

Dj

Pℓ

Sjℓ

Figure 2
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Let us define the following spaces over the grids Th and Dh:

(3.3)

Xh = {vh ∈ C(Ω̄); vh|Ti
is linear for each Ti ∈ Th},

Vh = {vh ∈ Xh; vh = 0 on ∂Ω},
Zh = {w ∈ L2(Ω); w|Dj

= const. for each Dj ∈ Dh},
Dh = {w ∈ Zh; w = 0 on Dj , j ∈ H}.

It is well known that Xh ⊂ W 1,2(Ω) and Vh ⊂ W
1,2
0 (Ω) = V . As usual, we

consider a basis of the space Xh consisting of the functions wj ∈ Xh such that
wj(Pℓ) = δjℓ for all ℓ ∈ J. The system {wj , j ∈ J \ H} is the basis in Vh.
Furthermore, the basis of the space Zh is formed by the functions dj ∈ Zh,
which are characteristic functions of dual volumes Dj , j ∈ J. Clearly, the system
{dj , j ∈ J \H} is the basis for Dh.

Let us note that since Vh →֒ V →֒ L2(Ω) (→֒ denotes continuous imbedding)
for all h ∈ (0, h0), we get

(3.4) |uh| ≤ C‖uh‖ ∀uh ∈ Vh.

Moreover, the inverse inequality (see [4, Theorem 3.2.6]) implies that for all h ∈
(0, h0)

(3.5) ‖uh‖ ≤ S(h)|uh| ∀uh ∈ Vh,

where S(h) = c∗

h , with some constant c
∗ independent of h.

By rh we denote the operator of the Lagrange interpolation, rh : C(Ω̄) → Xh
s.t.

(3.6) rhv(Pj) = v(Pj), Pj ∈ Ph.

Further Rh : V → Vh is a Ritz projector, defined by

(3.7)

∫

Ω
grad(Rhu) · grad ϕh =

∫

Ω
grad u · grad ϕh for all ϕh ∈ Vh.

In [3] it was shown that

(3.8) lim
h→0

‖Rhu− u‖ = 0

and

(3.9) ‖Rhu‖ ≤ ‖u‖ for all u ∈ V.
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In order to derive the numerical scheme for (2.1)–(2.3), we introduce the fol-
lowing forms:

(3.10)

(uh, vh)h :=

∫

Ω
rh(uh · vh), uh, vh ∈ Xh

((uh, vh)) :=

∫

Ω
grad uh · grad vh, uh, vh ∈ Vh

bh (uh, ϕh) := −
∑

j∈J

∑

ℓ∈S(j)

(

∫

∂Djℓ

vi (uh)ni dS
)

·

·
{

λjℓ (uh) uh

(

Pj
)

+
(

1− λjℓ (uh)
)

uh (Pℓ)
}

ϕh

(

Pj
)

,

where λjℓ (uh) =

{

1 if
∫

∂Djℓ
vi (uh)ni dS ≥ 0,

0 otherwise,

uh, ϕh ∈ Vh.

Let us point out that we use an upstream discretization of the convective term,
i.e. of the form b. We easily find out that bh can be written in the equivalent form

(3.11)

bh (uh, ϕh) = −
∑

j∈J

∑

ℓ∈S(j)

{

(

∫

∂Djℓ

vi (uh)ni dS
)+
uh

(

Pj
)

+

+
(

∫

∂Djℓ

vi (uh)ni dS
)−
uh (Pℓ)

}

ϕh

(

Pj
)

,

where a+ = max(a, 0), a− = min(a, 0), a ∈ R. Let ϕh be a basis function of Vh,
i.e. ϕh = wj for some j ∈ J \H . Then (3.11) turns to

(3.12)

bh
(

uh, wj
)

= −
∑

ℓ∈S(j)

(

∫

∂Djℓ

vi (uh)ni dS
)+
uh

(

Pj
)

+

+
(

∫

∂Djℓ

vi (uh)ni dS
)−
uh (Pℓ) .

Here the analogy with a finite volume approximation can be very well seen. In
fact, in the FVM we use the same upwind approximation of the convective term,
and we go even further and approximate also

∫

∂Djℓ
vini dS. For example, the

Vijayasundaram method (see [21]) gives in the one-dimensional case the following
approximation

(3.13)
(

∫

∂Djℓ

vi (u) · ni dS
)±

≈ |∂Djℓ|
(

vi
(uj + uℓ

2

)

ni

)±
.
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This is the sense in which we understand that our scheme will combine “finite
volume” and finite element approach. Namely, the “finite volume” approximation
(3.12) is used for the convective term and a finite element approximation for the
viscous term.
To derive a fully discrete scheme we will need a partition of the time interval

[0, T ], T > 0. Let us denote it by {tk = kτ ; k = 0, 1, . . . , N}, τ = T
N ∈ (0, τ0),

τ0 > 0.

Assumption 3.14. We assume that the parameters h ∈ (0, h0) (of a space grid)
and τ ∈ (0, τ0) (of a time mesh) are bound together in the following way

∃ Ĉ, C̃ > 0, α ∈ [0, 1) Ĉ ≤ τ

h(1+α)
≤ C̃.

Now we are able to define the combined finite element–finite volume discretiza-
tion of 2.7 (i), (ii):

Find uk
h ∈ Vh, k = 1, 2, . . . , N , such that

(3.15)
1

τ
(uk

h − uk−1
h , ϕh)h + ν ((u

k
h, ϕh)) = bh(u

k−1
h , ϕh),

∀ϕh ∈ Vh, k = 1, 2, . . . , N

and

(3.16) u0h = Rh(u0).

Problem (3.15), (3.16) has exactly one discrete solution uk
h, k = 1, . . . , N , which

follows from the Lax-Milgram theorem and the properties of (·, ·)h and bh. We
will show them in the sequel.

3.17 Basic properties of the proposed scheme

Definition 3.18. The mapping Lh : Xh → Zh, defined by

Lhwh :=
∑

j∈J

wh

(

Pj
)

dj for any wh ∈ Xh, (i.e. wh =
∑

j∈J

wh

(

Pj
)

wj)

is said to be the mass-lumping operator.

Obviously Lh(Vh) = Dh. This operator will be used to examine forms (·, ·)h
and bh(·, ·). Firstly, we show a property of Lh.

Lemma 3.19. For any wh ∈ Vh, h ∈ (0, h0), we have

|wh − Lhwh| ≤ h‖wh‖.
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Proof: Let us denote a set of all parts of the boundaries of triangles lying in Dj

by Bj , j ∈ J, i.e.

Bj := {x ∈ Dj ; x ∈ ∂Tk, for all Tk s.t. Pj ∈ Tk}.

By the Taylor expansion we have for all x ∈ Dj \Bj the following equality

wh (x) = Lhwh (x) + grad wh (x̃) ·
(

x− Pj
)

,

where x̃ := θx + (1− θ)Pj , θ ∈ (0, 1) and j ∈ J. This and the continuity of the
function wh imply

(

∫

Ω
(wh − Lhwh)

2
)1/2

=
(

∑

Dj∈Dh

∫

Dj

(wh − Lhwh)
2
)1/2

≤

≤
(

∑

Dj∈Dh

∫

Dj\Bj

(wh − Lhwh)
2
)1/2

≤

≤
(

∑

Dj∈Dh

h2‖ gradwh‖2L2(Dj)

)1/2
= h‖wh‖,

which concludes the proof. �

The form (·, ·)h can be considered as an approximation of the L2-scalar product.
Moreover, it can be defined with the aid of numerical integration:

∫

Ω
f dx =

∑

T∈Th

∫

T
f dx ≈

∑

T∈Th

1

3
|T |
(

f(PT
i ) + f(P

T
j ) + f(P

T
k )
)

,

where f ∈ C ¯(Ω), PT
i , P

T
j , P

T
k are the vertices of T ∈ Th. The proposed numerical

quadrature is precise for polynomials of order one. Thus, we have

(u, v)h =
∑

T∈Th

1

3
|T |
(

u(PT
i )v(P

T
i ) + u(P

T
j )v(P

T
j ) + u(P

T
k )v(P

T
k )
)

=

∫

Ω
Lhu · Lhv, u, v ∈ Xh.

Further, if v := wj is a basis function in Xh, then

(3.20) (u,wj)h =
1

3

∑

T∈Th;Pj∈T

|T |u(Pj) = |Dj |u(Pj), u ∈ Xh,

due to the barycentric subdivision of any triangle by the dual finite volumes, thus
|T ∩Dj | = 13 |T |, if Pj ∈ T .
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Our combined finite element–finite volume scheme (3.15), (3.16) can be equiv-
alently written in the following form:

(3.21)

|Dj |uk+1
h (Pj) + τν

∑

ℓ∈J\H

((wj , wℓ))u
k+1
h (Pℓ) =

= |Dj |uk
h(Pj) + τbh(u

k
h, wj), j ∈ J \H ; k = 0, 1, 2, . . . , N − 1;

u0h = Rh(u0).

4. Convergence

In this section we show the convergence of the approximate solutions {uk
h},

tk ∈ [0, T ], to the exact weak solution of problem 2.7 (i), (ii).
To this aim, a classical approach of finite element analysis based on apriori

estimates is used. Further, we will need some compactness property, which will
be obtained by the Fourier transform with respect to time.
First of all, we show how large is the error if we replace (·, ·) by (·, ·)h and b

by bh. Let us denote

(4.1) εkh :=
(

uk
h − uk−1

h , ϕh

)

−
(

uk
h − uk−1

h , ϕh

)

h
.

Lemma 4.2. There exists a constant c1 > 0, independent of h, such that

|εkh| ≤ c1h
2(‖uk

h‖+ ‖uk−1
h ‖

)

‖ϕh‖

for all uk
h, u

k−1
h , ϕh ∈ Vh and h ∈ (0, h0).

Proof: To simplify the notation, let us estimate for any uh, vh ∈ Vh the following
term:

∣

∣

∣

∣

∫

Ω
uhvh − rh (uhvh)

∣

∣

∣

∣

≤
∑

T∈Th

|T |1/2 ‖uhvh − rh (uhvh)‖L2(T ) ≤

≤ (due to the properties of rh, see [4]) ≤ ch2
∑

T∈Th

(

‖uhvh‖2W 2,2(T )

)1/2

≤ (since uh

∣

∣

∣

T
, vh

∣

∣

∣

T
∈ P1(T )) ≤ ch2‖uh‖ · ‖vh‖.

This implies that

|εkh| ≤ c1h
2‖uk

h − uk−1
h ‖ ‖ϕh‖ ≤ c1h

2(‖uk
h‖+ ‖uk−1

h ‖
)

‖ϕh‖.
�

Our next aim will be to estimate the error

(4.3) ekh := b
(

uk−1
h , ϕh

)

− bh

(

uk−1
h , ϕh

)

.

The following inequality will be useful in order to estimate ekh.
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Proposition 4.4. There exists a constant cβ , β ∈ (0, 1), independent of h, such
that the estimate

‖v‖L∞(Ω) ≤ cβh
−β‖v‖

holds for all v ∈ Vh, h ∈ (0, h0).

Proof: The proof is based on an inverse inequality (cf. [4, Theorem 3.2.6]). See
also [18]. �

Now we are able to estimate ekh.

Lemma 4.5. There exists a constant Cβ , β ∈ (0, 1), independent of h, such that

(4.6) |b (u,w)− bh (u,w)| ≤ Cβh
1−β‖u‖2 · ‖w‖

holds for all u,w ∈ Vh, h ∈ (0, h0).

Proof: We divide the difference between b and bh into two parts. The first
one measures the error that we make if we replace w ∈ Vh by Lhw ∈ Dh. It
means that instead of testing by a piecewise linear “finite element test function”
we want to use a piecewise constant “finite volume test function”. The second
part gives the error that is made if instead of the “classical” form b we use an
upwind approximation of the convective term. In this case the test function has
already been piecewise constant. Thus,

b (u,w)− bh (u,w) = Y1 + Y2,

where

Y1 := b (u,w) +
∑

T∈Th

∫

T

∂

∂xi

(

vi (u)u
)

Lhw =

=
∑

T∈Th

∫

T

∂

∂xi

(

vi (u) · u
)(

Lhw − w
)

,

Y2 := −
∑

T∈Th

∫

T

∂

∂xi

(

vi (u) · u
)

Lhw − bh
(

u,w
)

.

Let us realize that since vi ∈ C1(R), i = 1, 2, and u ∈ Vh ⊂ V , ∂
∂xi

(

vi (u) · u
)
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exists a.e. in Ω. Firstly, we will estimate Y1.

|Y1| ≤
∑

T∈Th

∣

∣

∣

∣

∫

T

∂

∂xi

(

vi (u)u
)(

Lhw − w
)

∣

∣

∣

∣

≤

≤
∑

T∈Th

[(

∫

T

( ∂

∂xi
vi (u) · u

)2
)1/2

+
(

∫

T

(

vi (u)
∂u

∂xi

)2
)1/2]

·

· ‖Lhw − w‖L2(T ) ≤

≤
∑

T∈Th

(

V2‖u‖L∞(T )‖ grad u‖L2(T ) + V1‖u‖L∞(T )‖ grad u‖L2(T )

)

·

· ‖Lhw − w‖L2(T ) ≤
≤ (due to Lemma 3.19 and Proposition 4.4) ≤

(

V1 + V2
)

cβh
1−β‖u‖2‖w‖.

Hence we get

(4.7) |Y1| ≤ c̃βh
1−β‖u‖2‖w‖ ∀u, v ∈ Vh, β ∈ (0, 1) .

Further, we have
∫

Ω

∂

∂xi

(

vi (u)u
)

Lhw =
∑

D∈Dh

∫

D

∂

∂xi

(

vi (u)u
)

Lhw =

=
∑

j∈J

∑

ℓ∈S(j)

(

∫

∂Djℓ

vi (u)niu dS
)

w
(

Pj
)

.

It means that Y2 can be equivalently written in the form

Y2 =
∑

j∈J

∑

ℓ∈S(j)

(

∫

∂Djℓ

vi (u)ni
{

λjℓ (u)
(

u
(

Pj
)

− u
)

+

+
(

1− λjℓ (u)
)(

u (Pℓ)− u
)}

w
(

Pj
)

dS
)

.

If we realize that ∂Djℓ = ∂Dℓj, λjℓ (u) = 1− λℓj (u), and the outer normal from
Dj to Dℓ has opposite sign than the outer normal from Dℓ to Dj , we obtain

Y2 =
1

2

∑

j∈J\H

∑

ℓ∈s(j)

(

∫

∂Djℓ

vi (u)ni
{

λjℓ (u)
(

u
(

Pj
)

− u
)

+

+
(

1− λjℓ (u)
)(

u (Pℓ)− u
)}(

w
(

Pj
)

− w (Pℓ)
)

dS
)

.

Here we used that w ∈ Vh vanishes on the boundary ∂Ω, and S(j) = s(j) for
j ∈ J \H . Let us return for a moment to Figure 2. From the linearity of u,w on
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∂Djℓ and in Sjℓ we conclude that

|Y2| ≤
1

2

∑

j∈J\H

∑

ℓ∈s(j)

|∂Djℓ| V1 ‖u‖L∞(Sjℓ) · 2h‖ grad u‖L∞(Sjℓ)·

· h‖ gradw‖L∞(Sjℓ)
≤

≤ (using the inverse inequality [4, Theorem 3.2.6]) ≤

≤ V1
∑

j∈J\H

∑

ℓ∈s(j)

h ‖u‖L∞(Sjℓ) · ĉ ‖ grad u‖W 1,2
0 (Sjℓ)

· ĉ ‖ gradw‖
W 1,2
0 (Sjℓ)

≤

≤ c h‖u‖L∞(Ω)‖u‖ · ‖w‖ ≤ (due to Proposition 4.4) ≤ ˜̃cβh1−β‖u‖2‖w‖.

We get

(4.8) |Y2| ≤ ˜̃cβh1−β‖u‖2‖w‖ ∀u,w ∈ Vh, β ∈ (0, 1).

Finally, (4.7) and (4.8) finish the proof. �

Corollary 4.9. There exist constants c2, c̃2 > 0, independent of h, s.t. for all
u,w ∈ Vh

|b(u,w)− bh(u,w)| ≤ c2|u| · ‖u‖ · ‖w‖,(4.10)

|b(u,w)− bh(u,w)| ≤ c̃2 h‖u‖L∞(Ω)‖u‖ · ‖w‖.(4.11)

Proof: The property (4.11) follows from the proof of Lemma 4.5. The inverse
inequality

‖u‖L∞(Ω) ≤ c h−1|u| ∀u ∈ Vh,

together with (4.11) gives (4.10). �

Thus the error ekh can be bounded in the following ways

|ekh| ≤ Cβh
1−β‖uk−1

h ‖2‖ϕh‖, β ∈ (0, 1) ;(4.12)

and

|ekh| ≤ c2|uk−1
h | · ‖uk−1

h ‖ · ‖ϕh‖,(4.13)

where uk−1
h , ϕh ∈ Vh.
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4.14 Apriori estimates

Lemma 4.15. Let there exist a constant ν∗ > 0 independent of h, τ, s.t.

(4.16) ν − 4c1h
2

τ
≥ ν∗

and

(4.17)
2V 21 d

2
1

ν
µ0 +

2c22
ν
µ0 ≤ ν∗ − δ for some δ ∈ (0, ν∗) ,

where µ0 :=
(

C2 + c1h
2
0

)

‖u0‖2 + τ0C2
2V 21 d

2
1 + 2c

2
2

ν
‖u0‖4. Then the solutions of

(3.15), (3.16) satisfy the following estimates

(i) |uk
h|2 ≤ c for all k = 0, 1, . . . , N,

(ii)

N
∑

k=1

|uk
h − uk−1

h |2 ≤ c,

(iii) τ

N
∑

k=1

‖uk
h‖2 ≤ c,

uniformly with respect to h, h ∈ (0, h0).

Proof: Let us put in (3.15) ϕh := u
k
h. Using Lemmas 4.2, 2.9 and (4.13) we get

|uk
h|2 − |uk−1

h |2 + |uk
h − uk−1

h |2 + 2τν‖uk
h‖2 ≤ 2τV1d1|uk−1

h |‖uk−1
h ‖‖uk

h‖+
+2τc2|uk−1

h |‖uk−1
h ‖‖uk

h‖+ 2c1h2
(

‖uk
h‖+ ‖uk−1

h ‖
)

‖uk
h‖ ≤

≤ (using the Young inequality) ≤ τ
2V 21 d

2
1

ν
|uk−1

h |2‖uk−1
h ‖2 + τ ν

2
‖uk

h‖2+

+τ
2c22
ν

|uk−1
h |2‖uk−1

h ‖2 + τ ν
2
‖uk

h‖2 + 3c1h2‖uk
h‖2 + c1h2‖uk−1

h ‖2.

We find that

(4.18)

|uk
h|2 − |uk−1

h |2 + |uk
h − uk−1

h |2 +
(

τν − 3c1h2
)

‖uk
h‖2 ≤

≤ τ
2V 21 d

2
1

ν
|uk−1

h |2‖uk−1
h ‖2 + τ 2c

2
2

ν
|uk−1

h |2‖uk−1
h ‖2 + c1h2‖uk−1

h ‖2.
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Let us sum up (4.18) over k, k = 1, 2, . . . , r ≤ N .

|ur
h|2 +

r
∑

k=1

|uk
h − uk−1

h |2 +
(

τν − 3c1h2
)

r
∑

k=1

‖uk
h‖2−

− τ
2V 21 d

2
1

ν

r
∑

k=2

|uk−1
h |2‖uk−1

h ‖2 − τ
2c22
ν

r
∑

k=2

|uk−1
h |2‖uk−1

h ‖2−

− c1h
2

r
∑

k=2

‖uk−1
h ‖2 ≤

≤ |u0h|2 + τ
2V 21 d

2
1

ν
|u0h|2‖u0h‖2 + τ

2c22
ν

|u0h|2‖u0h‖2 + c1h2‖u0h‖2 ≤
≤ (using (3.9), (3.4) ) and τ ∈ (0, τ0)) ≤

≤
(

C2 + c1h
2
0

)

‖u0‖2 + τ0C2
2V 21 d

2
1 + 2c

2
2

ν
‖u0‖4 =: µ0.

We claim that if the conditions (4.16), (4.17) are fulfilled then for all r =
1, 2, . . . , N , it holds the following

(4.19) |ur
h|2 +

r
∑

k=1

|uk
h − uk−1

h |2 + τδ
r
∑

k=1

‖uk
h‖2 ≤ µ0.

This can be verified by the mathematical induction. Let, by induction hypothesis,
(4.19) holds for all n = 1, 2, . . . , r − 1. Then

|ur
h|+

r
∑

k=1

|uk
h − uk−1

h |2 +
(

τν − 4c1h2
)

r
∑

k=1

‖uk
h‖2−

−τ
(

2V 21 d
2
1

ν
µ0 +

2c22
ν
µ0

) r
∑

k=1

‖uk
h‖2 ≤ µ0.

Due to (4.16), (4.17) we get

|ur
h|2 +

r
∑

k=1

|uk
h − uk−1

h |2 + τν∗
r
∑

k=1

‖uk
h‖2 − τ (ν∗ − δ)

r
∑

k=1

‖uk
h‖2 ≤ µ0.

It means that we have proved that (4.19) holds for all r = 1, 2, . . . , N . Since µ0 is
a constant independent of h and τ , we obtain that the apriori estimates (i)–(iii)
are fulfilled. �

Now let us stop for a while and think about the sufficient conditions (4.16),
(4.17). The condition (4.16) gives some restriction either on ν or on τ . Instead
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of forcing ν to be very large we assume that the “stability condition” (3.14)
holds. Thus, τ = O

(

h1+α
)

, α ∈ [0, 1), and the condition (4.16) is automatically
fulfilled. The condition (4.17) represents some assumption on the smallness of
data. Namely,

(2V 21 d
2
1

ν
+
2c22
ν

)

µ0 =

=
2V 21 d

2
1 + 2c

2
2

ν
‖u0‖2

(

C2 + c1h
2
0

)

+ τ0C
2
(2V 21 d

2
1 + 2c

2
2

ν
‖u0‖2

)2
.

If we assume that

(4.20)
2V 21 d

2
1 + 2c

2
2

ν
‖u0‖2 ≤ d′,

where d′ is so small that

(4.21)
(

C2 + c1h
2
0

)

d′ + τ0C
2 (d′

)2
< ν∗,

then (4.17) is fulfilled. We can thus reduce (4.17) to the assumption (4.20), which
gives us some condition on small data.

4.22 The limit process

Using the sequence of approximate solutions
{

uk
h

}N

k=1
we can define two dis-

crete functions. Namely,

(4.23)

uh : [−τ, T ]→ Vh is a piecewise constant function, s.t.

uh (t) = u
0
h for − τ ≤ t ≤ 0,

uh (t) = u
k
h for (k − 1) τ < t ≤ k · τ and k = 1, . . . , N.

(4.24)

wh : R → Vh is piecewise linear, defined in the following way:

wh is linear on [kτ, (k + 1) τ ], k = 0, . . . , N − 1,
wh (k · τ) = uk

h for k = 0, . . . , N,

wh = 0 on R \ 〈0, T 〉.

We use the notation uh, wh instead of more correct uh,τ , wh,τ , respectively.
Apriori estimates obtained in Lemma 4.15 imply that {uh}h∈(0,h0)

is bounded in

L∞
(

(0, T ) ;L2 (Ω)
)

and L2
(

(0, T ) ;V
)

. Hence, we can choose a subsequence such
that, if h→ 0 then

uh ⇀
∗ u ∗ -weakly in L∞((0, T ) ;L2 (Ω)

)

,(4.25)

uh ⇀ u weakly in L2
(

(0, T ) ;V
)

.(4.26)
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Lemma 4.27. We have

‖uh − wh‖L2(QT )
−→ 0 as h→ 0.

Proof: Using the apriori estimate 4.15 (ii), we find that

‖uh − wh‖L2(QT )
=

√

τ

3

(

N
∑

k=1

|uk
h − uk−1

h |2
)1/2

≤
√

τ

3
· c.

The proof is finished by letting τ → 0, since τ → 0 whenever h→ 0. �

This lemma and apriori estimates 4.15 (i)–(iii) give that if h→ 0 then

wh ⇀ u weakly in L2
(

(0, T ) ;V
)

,(4.28)

wh ⇀
∗ u ∗ -weakly in L∞((0, T ) ;L2 (Ω)

)

.(4.29)

However, the above results are not sufficient for the passage to the limit in
(3.15). We need some compactness result, which will be obtained by the aid of
the following theorem.

Theorem 4.30. Let X0, X , X1 be three Hilbert spaces, s.t. X0 ⊂ X ⊂ X1,
X0 →֒→֒ X , →֒→֒ denotes a compact imbedding. Let {vh} be a sequence of
functions from R to X0, with a compact support K, s.t.

‖vh‖L2(R;X0) ≤ c,
∫

R

|s|2γ‖v̂h(s)‖2X1 ds ≤ c, uniformly with respect to h.

Here γ is some positive constant and v̂h is a Fourier transform of vh (i.e. v̂h(s) =
∫∞
−∞ e−2iπtsvh(t) dt). Let us denote the space of such functions by Hγ

K (X0, X1).
Then

Hγ
K (X0, X1) →֒→֒ L2

(

K;X
)

.

Proof: (see [19, pp. 220–223]). �

We apply this result to our situation for which we set X0 = V , X = X1 =
L2(Ω), vh = wh, K = 〈0, T 〉. Since we have

‖wh‖L2
(

(0,T );V
) ≤ c,

the only thing to do is to show that
∫

R

|s|2γ |ŵh (s) |2 ds ≤ c for some γ > 0.
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Theorem 4.31. If the conditions (4.16), (4.17) are satisfied, then the sequence
of approximate solution

{

wh

}

h∈(0,h0)
fulfills the condition

(4.32)

∫

R

|s|2γ |ŵ(s)|2 ds ≤ c for 0 < γ <
1

4
.

Proof: Our combined FE–FV scheme (3.15) can be rewritten in the following
way

(4.33)
d

dt

(

wh (t) , ϕh

)

h + ν
((

uh (t) , ϕh

))

= bh
(

uh (t− τ) , ϕh

)

for all ϕh ∈ Vh, t ∈ (0, T ). Let us denote
εh (t) :=

(

wh(t), ϕh

)

−
(

wh (t) , ϕh

)

h,

i.e. εh (t) = ε
k
h for t ∈ [(k − 1) τ, kτ ]. Then it holds

d

dt
εh (t) =

(uk
h − uk−1

h

τ
, ϕh

)

−
(uk

h − uk−1
h

τ
, ϕh

)

h

for t ∈ [(k − 1)τ, kτ ], k = 1, 2, . . . , N . Thus, Lemma 4.2 implies that if t ∈
[(k − 1)τ, kτ ], k = 1, . . . , N , then

(4.34)

∣

∣

∣

∣

d

dt
εh (t)

∣

∣

∣

∣

≤ c1h
2
∥

∥

∥

uk
h − uk−1

h

τ

∥

∥

∥
‖ϕh‖.

Using (4.33) we find that

(4.35)
( d

dt
wh (t) , ϕh

)

= bh
(

uh (t− τ) , ϕh

)

− ν
((

uh (t) , ϕh

))

+
d

dt
εh (t) ,

∀ϕh ∈ Vh, t ∈ (0, T ) .

Let us represent the R.H.S. of (4.35) by
((

ah (t) , ϕh

))

, where ah(t) ∈ Vh for
all t ∈ (0, T ). Using (4.34), Lemma 2.9 and (4.10) we obtain

‖ah (t) ‖ ≤ V1d1|uk−1
h |‖uk−1

h ‖+c2|uk−1
h |‖uk−1

h ‖+ν‖uk
h‖+c1h2

∥

∥

∥

uk
h − uk−1

h

τ

∥

∥

∥
,

t ∈ [(k − 1) τ, kτ ], k = 1, . . . , N.
This implies that

(4.36)

∫ T

0
‖ah (t) ‖ dt ≤ V1d1τ

N
∑

k=1

|uk−1
h |‖uk−1

h ‖+ c2τ
N
∑

k=1

|uk−1
h |‖uk−1

h ‖+

+ ντ

N
∑

k=1

‖uk
h‖+ c1h2

N
∑

k=1

‖uk
h − uk−1

h ‖.
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The last term from the R.H.S. of (4.36) can be estimated in the following way (cf.
(3.5))

c1h
2

N
∑

k=1

‖uk
h − uk−1

h ‖ ≤ c1c
∗h

N
∑

k=1

|uk
h − uk−1

h |.

Now applying the Hölder inequality and apriori estimates (cf. Lemma 4.15) we
conclude that

∫ T

0
‖ah (t) ‖ dt ≤ const.

Further we proceed in a standard way (see [19, p. 277]). Let us denote by ãh
the prolongation of ah by zero on R \ [0, T ] and let âh be its Fourier transform.
Our scheme (3.15) can be written in the form

d

dt

(

wh (t) , ϕh

)

=
((

ãh (t) , ϕh

))

+
(

u0h, ϕh

)

δ0 −
(

uN
h , ϕh

)

δT

for all ϕh ∈ Vh, δ0, δT are Dirac functions concentrated at 0 and T . By the
Fourier transform we get

2πis
(

ŵh (s) , ϕh

)

=
((

âh (s) , ϕh

))

+
(

u0h, ϕh

)

−
(

uN
h , ϕh

)

exp (−2πisT ) .

Let ϕh := ŵh, then we obtain the following estimate

2π|s||ŵh (s) |2 ≤ ‖âh (s) ‖ · ‖ŵh (s) ‖+ c1|ŵh (s) |.

As ‖âh (s) ‖ ≤
∫ T

0
‖ah (t) ‖ dt ≤ c, we find that

(4.37) |s||ŵh (s) |2 ≤ c‖ŵh (s) ‖.

Since for any 0 < γ < 1/4 one can show that

|s|2γ ≤ c (γ)
(

1 + |s|
)

/
(

1 + |s|1−2γ
)

∀ s ∈ R,

it can be proved that

(4.38)

∫

R

|s|2γ |ŵh (s) |2 ds ≤ c (γ)

∫

R

1 + |s|
1 + |s|1−2γ |ŵh (s)|2 ds ≤

≤ c (γ)

∫

R

|ŵh (s)|2 ds+ c
∫

R

‖ŵh (s) ‖
1 + |s|1−2γ ds ≤

≤ c

∫

R

|ŵh (s)|2 ds+ c
(

∫

R

ds

(1 + |s|1−2γ)2

)1/2

·
(
∫

R

‖ŵh (s) ‖2 ds
)1/2

.
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The last term is bounded because
∫

R

(

1+ |s|1−2γ
)−2

ds is finite for 0 < γ < 1/4
and

∫

R

|ŵh (s)|2 ds ≤ C2
∫

R

‖ŵh (s) ‖2 ds = C2
∫ T

0
‖wh (t) ‖2 dt ≤ c.

This finishes the proof. �

By Theorem 4.31 we obtain that there exists a subsequence of
{

wh

}

h (let us
denote it by the same symbol) such that

(4.39) wh −→ u strongly in L2 (QT ) .

Of course, for
{

uh

}

h we get

(4.40) uh −→ u strongly in L2 (QT ) .

Next we will prove that the limit u is the weak solution of the problem (2.1)–(2.3)
(cf. Definition 2.7).
Let ϕh = rhv, v ∈ C∞

0 (Ω), and ψ ∈ C∞
(

[0, T ]
)

s.t. ψ (T ) = 0. The scheme
(3.15) can be rewritten in the following way

(4.41)

−
∫ T

0

(

wh (t) , ψ
′ (t) · rhv

)

h
dt+ ν

∫ T

0

((

uh (t) , ψ (t) · rhv
))

dt =

=

∫ T

0
bh
(

uh (t− τ) , rhv · ψ (t)
)

dt+
(

u0h, rhv · ψ (0)
)

h
.

We will pass to the limit for h→ 0 in each term.
(i)

∫ T

0

(

wh (t) , ψ
′ (t) · rhv

)

h dt =

∫ T

0

(

wh (t) , ψ
′ (t) · rhv

)

dt−
∫ T

0
εh (t) dt,

where |εh(t)| ≤ ch2‖wh (t) ‖‖ψ′(t) rhv‖, which can be obtained in the same way
as Lemma 4.2. Due to (4.39), and the fact that

(4.42) rh v −→ v strongly in V for v ∈ C∞
0 (Ω),

we have

(4.43)

∫ T

0

(

wh (t) , ψ
′ (t) · rhv

)

dt −→
∫ T

0

(

u (t) , ψ′ (t) · rhv
)

dt.

Now we show that
∫ T

0
εh (t) dt −→ 0 as h→ 0.
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In fact,

(4.44)

∣

∣

∣

∣

∣

∫ T

0
εh (t) dt

∣

∣

∣

∣

∣

≤
∫ T

0
|ψ′ (t) | ch2‖wh (t) ‖‖rhv‖ ≤

≤ (due to (4.42)) ≤ ch2‖ψ′‖
L2
(

(0,T )
)‖wh‖L2

(

(0,T ),V
) ≤

≤ (using (4.28)) ≤ ch2 → 0 as h→ 0.

(ii)
∫ T

0

((

uh (t) , ψ (t) · rhv
))

dt −→
∫ T

0

((

u (t) , ψ (t) v
))

dt,

because

∫ T

0

((

uh (t) , ψ (t) · rhv
))

−
((

u (t) , ψ (t) v
))

dt =

∫ T

0

((

uh (t) , ψ (t) (rhv − v)
))

dt

+

∫ T

0

((

uh (t)− u (t) , ψ (t) v
))

dt ≤
(

∫ T

0
‖uh (t) ‖2 dt

)1/2

·

(

∫ T

0
|ψ (t) |2‖rhv − v‖2 dt

)1/2

+

∫ T

0

((

uh (t)− u (t) , ψ(t)v
))

dt→ 0 as h→ 0.

Here we use the fact that ‖uh‖L2
(

(0,T );V
) ≤ c, and that (4.42), (4.26), and of

course ψ (t) v ∈ L2
(

(0, T ) ;V ′
)

hold.

(iii)
(

u0h, rhv · ψ (0)
)

h
=
(

u0h, rhv · ψ (0)
)

− ε0h.

Since
(

u0h, rhv ψ (0)
)

→
(

u0, v ψ (0)
)

as h → 0 (due to (3.8)), our aim is to show
that

ε0h −→ 0 as h→ 0.
But |ε0h| ≤ ch2‖u0h‖ · ‖rhv ψ (0) ‖ → 0, due to (4.42), (3.9).
(iv) We want to prove that

∫ T

0
bh
(

uh (t− τ) , ψ (t) · rhv
)

dt −→
∫ T

0
b
(

u (t) , ψ (t) v
)

dt.

Firstly we show that

∣

∣

∣

∣

∣

∫ T

0
bh
(

uh (t− τ) , ψ (t) · rhv
)

− b
(

uh (t− τ) , ψ (t) · rhv
)

dt

∣

∣

∣

∣

∣

−→ 0 as h→ 0.
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By Lemma 4.5 we get
∣

∣

∣

∣

∣

∫ T

0
bh
(

uh (t− τ) , ψ (t) · rhv
)

− b
(

uh (t− τ) , ψ (t) · rhv
)

dt

∣

∣

∣

∣

∣

≤

≤
∫ T

0
|ψ (t) |Cβh

1−β‖uh (t− τ) ‖2‖rhv‖ dt ≤

≤ ch1−β‖ψ‖
C1
(

[0,T ]
)‖uh‖L2

(

(0,T );V
) ≤ ch1−β −→ 0,

because β ∈ (0, 1) and h→ 0.
Further, it holds

∣

∣

∣

∣

∣

∫ T

0
b(uh(t− τ), ψ(t)rhv)− b(uh(t− τ), ψ(t)v)dt

∣

∣

∣

∣

∣

→ 0 as h→ 0,

since
∫ T

0

∫

Ω

∣

∣

∣

∣

vi
(

uh (t− τ)
)

uh(t− τ)ψ (t)
∂

∂xi
(rhv − v)

∣

∣

∣

∣

dx dt ≤

≤ c

∫ T

0
‖uh (t− τ) ‖2L4(Ω)‖ψ (t) ‖C([0,T ])‖rhv − v‖ dt ≤

≤ c

∫ T

0
‖uh (t− τ) ‖2L4(Ω) dt · ‖rhv − v‖ −→ 0,

due to the fact that ‖uh‖L2((0,T );V ) ≤ c, the imbedding L2 ((0, T ) ;V ) →֒
L2
(

(0, T ) ;L4 (Ω)
)

and (4.42). Finally,
∣

∣

∣

∣

∣

∫ T

0

∫

Ω

(

vi
(

uh (t− τ)
)

uh (t− τ)− vi
(

u (t)
)

u (t)
)

ψ (t)
∂

∂xi
v dx dt

∣

∣

∣

∣

∣

≤

≤
∫ T

0

∫

Ω

∣

∣

∣

∣

(

vi
(

uh (t− τ)
)

− vi
(

u (t)
)

)

u (t)ψ (t)
∂

∂xi
v

∣

∣

∣

∣

dx dt+

+

∫ T

0

∫

Ω

∣

∣

∣

∣

vi
(

uh (t− τ)
)(

uh (t− τ)− u (t)
)

ψ (t)
∂

∂xi
v

∣

∣

∣

∣

dx dt ≤

≤
∫ T

0

∫

Ω

∣

∣

∣

∣

∫ 1

0

dvi
du

(

u+ ξ (uh − u)
)

dξ

∣

∣

∣

∣

· |uh (t− τ) − u (t)| ·
∣

∣

∣

∣

u (t)ψ (t)
∂

∂xi
v

∣

∣

∣

∣

dx dt

+

∫ T

0

∫

Ω
V1 |uh (t− τ)| |uh (t− τ) − u (t)|

∣

∣

∣

∣

ψ (t)
∂

∂xi
v

∣

∣

∣

∣

dx dt ≤

≤
{

V2‖ψ‖C([0,T ])‖v‖C1(Ω)‖u‖L2(QT )
+ V1‖ψ‖C([0,T ])‖v‖C1(Ω)·

·
(

∫ T

0

∫

Ω
|uh (t− τ) |2 dx dt

)1/2
}

·
{

(

∫ T

0

∫

Ω
|uh (t− τ) − u (t− τ) |2 dx dt

)1/2
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+

(

∫ T

0

∫

Ω
|u (t− τ)− u (t) |2 dx dt

)1/2
}

≤
(

using : ‖uh‖L2
(

(0,T );Ω
) ≤ c

)

≤
(

V2 c2 + V1 c1

)(

‖uh − u‖L2(QT ) +
(

∫ T

0

∫

Ω
|u (t− τ)− u (t) |2 dx dt

)1/2
)

.

But the last term tends to zero due to (4.40) and the continuity in the mean of
function u ∈ L2 (QT ). Putting these results together we prove (iv).

It means that we have proved that the limit function u ∈ L2((0, T );V ) ∩
L∞((0, T );L2(Ω)) satisfies:

(4.45)

−
∫ T

0
(u(t), vψ′(t))dt+ ν

∫ T

0
((u(t), v))ψ(t)dt =

=

∫ T

0
b(u(t), v)ψ(t)dt+ (u0, v)ψ(0), v ∈ C∞

0 (Ω), ψ ∈ C∞
0 ([0, T )).

Since the space C∞
0 (Ω) is dense in V , (4.45) holds for all v ∈ V . If ψ ∈

C∞
0 ((0, T )), then (4.45) implies 2.7 (i). It is easy to see that u

′ ∈ L2((0, T );V ′)
and

(4.46) 〈u′(t), v〉+ ν((u(t), v)) = b(u(t), v), v ∈ V, a.e. t ∈ (0, T ).
Let us multiply (4.46) by any ψ ∈ C∞

0 ([0, T )), integrate over [0, T ] and use the
integration by parts in the first term.

(4.47)

−
∫ T

0
(u(t), v)ψ′(t) dt+ ν

∫ T

0
((u(t), v))ψ(t) dt =

=

∫ T

0
b(u(t), v)ψ(t) dt+ (u(0), v)ψ(0) v ∈ V, ψ ∈ C∞

0 ([0, T )).

From (4.45) and (4.47) we obtain that u(0) = u0, i.e. 2.7 (ii).

Let us summarize the obtained results in the following main theorem.

Theorem 4.48 (convergence result). Let
{

uk
h

}N
k=0 be the sequence of solutions

of the scheme (3.15), (3.16). Let
{

uh

}

h∈(0,h0)
be the sequence defined in (4.23)

and let the assumptions 2.4, 3.2 hold. We suppose that

(i) (2V1d
2
1 + 2c

2
2)µ0 < ν2/2

(we can take for example ν∗ = ν/2, for the definition of µ0, see Lemma 4.15).
Moreover, let the “stability” condition be fulfilled:

(ii) ∃ Ĉ, C̃ > 0 α ∈ [0, 1) : Ĉ ≤ τ

h1+α ≤ C̃.

Then
uh −→ u strongly in L2 (QT ) ,

where u is the weak solution of the convection-diffusion problem (2.1)–(2.3).
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5. Conclusion

In this paper the convergence of a combined finite element–finite volume
method for a nonlinear convection-diffusion equation was proved. We were able
to prove this result without the assumption that the triangulation is of a weakly
acute type, and with less regularity of the initial data than in [8]. On the other
hand, the assumption 4.48 (i) on the small data was important in our approach.
There are several open questions for further investigation: the proof of error

estimates, the study of a combined finite volume–finite element method with
higher order approximations, the study of implicit schemes, and a generalization
to the case of the whole system of Navier-Stokes equations for compressible fluids.
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