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Fixed points for multifunctions on generalized metric
spaces with applications to a multivalued Cauchy problem

ADRIAN PETRUSEL

Abstract. The purpose of this paper is to prove an existence result for a multivalued
Cauchy problem using a fixed point theorem for a multivalued contraction on a gener-
alized complete metric space.
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1. Introduction

In 1958 W.A.J. Luxemburg, using a fixed point theorem for a single-valued
contraction on a generalized metric space, proved the existence and the uniqueness
of solution of the following Cauchy problem:

(1) o'(t) = f(t,2(t),  x(to) = wo,

where ¢ and x are real variables and f is a real function defined on the rectangle
[t —to] < a, |z —x0] <b, a,b>0.

The purpose of this paper is to prove an existence result for a multivalued
Cauchy problem using a fixed point theorem, for a multivalued contraction defined
on a complete generalized metric space.

2. Preliminaries

The concept of a generalized metric space was introduced by Luxemburg and
Jung as follows:

Definition 2.1 ([6], [9]). The pair (X, d) will be called a generalized metric space
if X is an arbitrary nonempty set and d is a function d : X x X — [0, oo] which
fulfills all the standard conditions for a metric.

In this paper, the generalized metric d is allowed to take the value +oc as well.
In a generalized, just as in a metric space, we can define open and closed balls,
convergence of sequences, completeness of the space, etc.
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If (X,d) is a generalized metric space, Y C X, 2 € X and € > 0 then:
0(Y) = sup{d(a,d)|a,be Y},
D(Y,z) = inf{d(y,z) |y € Y},
Bx(v,e) ={y € X |d(z,y) <e},
VV,e)={z € X|D(Y,x) < e},
PX)={Y|Y c X},
P(X) ={Y e P(X)|Y # 0},
Py(X)={Y e P(X)|Y =Y},
Pepev(X) ={Y € P(X)|Y compact and convex in X} (here X is a generalized
normed space),

inf{e >0|A CV(B,e), BCV(A,¢e)}, if the infimum exists

H(A,B) = .
+00, otherwise.
The pair (P,(X), H) is a generalized metric space and H is called the genera-
lized Hausdorff-Pompeiu distance induced by d.

Lemma 2.2 ([11]). If (X,d) is complete generalized metric space then
(Py(X), H) is a complete generalized metric space.

Definition 2.3 ([3]). Let (X,d) be a generalized metric space and T : X —
P, (X) be a multivalued operator. Then, T is called an a-contraction if there
exists a real number a € [0,1]such that z,y € X, d(z,y) < 0o = H(T(z),T(y)) <
ad(z,y).

Definition 2.4. Let (X,d) be a generalized metric space and T : X — P(X) a
multivalued operator. Then z* € X is called a fixed point for T if 2* € T'(z*).
The set of all fixed points will be denoted by FixT'.

The concept of semi-continuous mappings was introduced in 1932 by Bouligand
and Kuratowski.
We consider here the notion of an upper semicontinuous multivalued operator.

Definition 2.5 ([7]). Let X,Y be two metric spaces. A multivalued operator
T : X — P(Y) is called upper semicontinuous at g € X if and only if for any
neighborhood U of T'(zg), there exists a neighborhood V of z such that for each
x € V we have T'(x) C U. T is said to be upper semicontinuous (u.s.c.) on X if
it is u.s.c. at any point xg € X.

Definition 2.6. Let (X, d) be a generalized metric space and 7' : X — P, (X)
be a multivalued operator. A sequence (zp)n,eny C X is called the sequence of
successive approximations of T if and only if 29 € X and zy, € T(xp—1), Vn € N*.

The following result is well known in the field of set-valued analysis (see [1]).
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Proposition 2.7. Let 2 C R x R™ be an open set, (tg,z9) € Q and F : Q —
P.,(R"™) an u.s.c. multivalued operator.
Then there exist I = [tg — a,ty + a] C R (where a > 0) and M > 0 such that:
(i) I x Brn(zg,aM) C Q,
(ii) ||F(t,2)|| < M on I x Bgn(xg,aM).

An important concept is that of integrably bounded multivalued operator.

Definition 2.8 ([4]). Let (S, .4, 1) be a complete o-finite measure space and
(X, ]| - ||) be a separable Banach space. A multivalued operator T : S — Py(X)
is said to be integrably bounded if and only if there is a function r € Ll(S ) such
that for all v € T'(s) we have ||v]] < r(s) a.e.

For 1 < p < oo we define the set:
S%: ={felP(Q,X)]|f(s) eT(s), ae.},

ie. S’%,)« contains all selectors of T' that belong to Lebesgue-Bochner space LP(Q, X).
It is easy to see that SQL is a closed subset of Ll(Q, X) and it is nonempty if
and only if T is integrably bounded (see [2] and [4]).
Finally, the following theorem is a slight version of a result given in [10].

Theorem 2.9. Let (X, d) be a complete generalized metric space and T : X —
P, (X) be a multivalued a-contraction. We suppose that there is a sequence
(zn)neN C X of successive approximations of T such that there exists an index
N(z0) € N with the following property: d(xy,xn4;) < 0o, for all | € N*. Then
Fix T # 0.

3. Main result

Consider the following multivalued Cauchy problem
a'(t) € P(t,x(t))
©) {

z(tg) = 20

where F : Q@ € R x R" — P,(R"), with Q = [tg — a,tp + a] x Bra(z2,b),
(a,b>0).
The main result of this note is the following existence theorem:

Theorem 3.1. Consider the multivalued Cauchy problem (2). We suppose that:

(i) F:Q — Pp(R™) is u.s.c. and integrably bounded,

(ii) |t —to|H(F(t,u), F(t,v)) < k|lu — v||, for every (t,u), (t,v) € Q,
(iii) |t — to|PH(F(t,u), F(t,v)) < Allu —v||%, for every (t,u), (t,v) € Q,
(iv) Ak>0,0<a<l,8<aandk(l—a)<1-0.
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Then, the multivalued Cauchy problem (2) has a solution.

PrOOF: From Proposition 2.7 it follows the existence of a real constant M > 0
such that ||F'(t,z)|| < M on Q.

We denote by I the interval I = [tg— h, tg+h], where h = min{a, %} We shall
prove, by an application of Theorem 2.9, the existence of a solution of problem (2)

on this interval I.
For this purpose we shall consider a space X with a generalized metric d, as

follows:
X ={peCI,R")||lp(t) — x| <b, Vt eI, otg) ="}
d: X x X - Ry U{+o0}

s~ a0l )

d(p1,2) = Sup{ YA

where p > 1, pk(1 —a) <1 - 0.
From [9] we have that (X, d) is a complete generalized metric space.
Finally, we choose the multivalued operator T : X — X,

t
T(z) = {v e X|vt)ea®+ [ F(s,x(s))ds ae. I} ,

to
(where fti) F(s,z(s))ds denotes the multivalued integral of Aumann).
It is easy to see that a function ¢* is a fixed point of T" if and only if ¢* is a

solution of problem (2).
We shall prove now that T satisfies all the hypotheses of Theorem 2.9.

(a) T(x)#0 for each x € X.

Consider the multivalued operator Fy, given by Fy(t) = F(¢t,z(t)). By the
Kuratowski-Ryll-Nardzewski selection theorem, F; has a measurable selection
w(t) € Fy(t), for all t € I.

Define v(t) = 29 + LZ w(s)ds, t € I. We obtain v € T'(z) and so T'(z) # 0.
(b) T(z) is closed for each x € X.

Suppose (zp) is a sequence in T'(x) which converges to y € X. But xy,(t) €
29 + % F(t,z(t)) a.e. and 20 + fti) F(t,x(t)) is closed (see [7]). Hence y(t) €

0
a’ + [y, F(tz(t)) ae.
(¢) T is a multivalued contraction.

We shall prove that there exists L € (0,1) such that for each z,y € X with
d(x,y) < oo one obtains H(T'(x),T(y)) < Ld(z,y).

To see this, let v1 € T(x). Then vy € X and v () € 29 + ﬂ% F(s,z(s))ds, a.e.
on I. Tt follows that there is a mapping f5 € SIIT( ) such that vy (t) = 20 +

T
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ft fa(s)ds ae. on I. Since H(F(t,z(t)), F(t,y(t))) < kw one obtains

that there exists w € F(t,y(t)) such that || fz(t) — w| < kw on I. Thus
the multivalued operator G defined by G(t) = Fy(t) N K (t), t € I (where Fy(t) =

F(t,y(t)) and K(1) = {w € F(t,y(0) |1fo(t)—w]| < kL1O=4D1}) has nonempty
values.

Fy, and K are measurable and hence G is also measurable. Let f; be a mea-
surable selection for G (which exists by the Kuratowski-Ryll-Nardzewski selection

theorem). Then f,(t) € F(t,y(t)) a.e. on I and | fo(t) — f,(t)] < kw

on I.
Define va(t) = 2% + ft fy(s)ds, t € I. Tt follows that vy € T'(y) and

t t
[o1(t) = v2(B)]] = ||I0+/t f:c(S)dS—IO—/ fy(s) ds||

t
to |S_t0|
to |S—t0|”k
— to|PE

pk
Finally, one obtains:

) —w))] 1
o (®) = v 10
|t — tolPF p

Hence d(v1,v2) < %d(m,y).

From this and the analogous inequality obtained by interchanging the roles of
z and y, we get

H(T(x),T(y)) < ld(gc,y), for each z,y € X with d(z,y) < o0
p

(d) T admits a sequence of successive approximations (¢p, )neN With the property
that there exists an index N € N such that d(¢yn, o) < 00, for all [ € N*.

To see this, let (pn)neN a sequence of successive approximations for T' (where
@0 € X is arbitrary). Let @7 € T(yg). It follows that there exists fo € L'(I,R"),
fo(s) € F(s,¢0(s)) a.e. such that

t
p1(t) =2+ [ fo(s)ds ae.
to
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Let w2 € T(¢1). By the definition of T, one obtains again that there exists
f1 € LMI,R™), fi(s) € F(s,(s)) a.e. such that

t
wa(t) = xg + f1(s) ds a.e.
to

By the boundedness of F' we have
t t
lpa(t) — 1D = | / (f1(5) = fo(s)) ds]| < / 1£1(s) = fols) |l ds < 2M]t — to.
to to

Since f1(s) € F(s,¢(s)) a.e. and F has compact values, we obtain that there
exists w € F(s,pa(s)), for each s € I such that

lw = f1(s)l] < H(F (s, p2(s)), F (s, 1(5)))-
Consider the multivalued operator G defined by G(s) = Fi,(s) N H*(s) (where
Fyp,(s) := F(s,¢2(s)) and
H(s) :={w € X | [lw = fi(s)| < H(F(s,2(5)), F(s, 01(s))) a-e.}.)
Clearly G is measurable and by the Kuratowski-Ryll-Nardzewski selection the-

orem it admits a measurable selection fa(s) € G(s) a.e. on I. Thus fa(s) €
F(s,¢2(s)) a.e. and

[1f2() = f1(s)| < H(F(s,p2(s)), F(s, p1(s)))-
Let p3(t) := xo + fti) f2(s) ds. We have:

t t
le3(t) — 2D S/t 1f2(5) = fr(s)l < [ H(F(s,02(5)), F(s, 1(s))) ds

to

t _ t
<A Mds < A@M) [ |5 —to|* P ds

o |s—tol? to
t—t 1+a—p3
= A(ZM)‘J‘# < AQRM)*|t — to|t T 0.
l4a-p

Generally
lon41(t) — pr(t)]| < Altot a2 (@pr)a™ g (1=F) (1t Fam ) am
< Blt— t0|(1—6)(1+a+---+a"’2)+a"’1

1

where B = AT-o max{2M,1}.

In view of pk(1 —a) < 1 — (3 there exists an index N € N such that (1—3)(1+
a+---+a"2)+ a1 > pk, for each n > N. Hence for n > N, we have:

lpnt+1(t) —en (@l
|t —to[Pk

where v, = (1= 3)(1+ -+ a""2) + a" 1 - pk > 0.

This shows that d(¢n11,¢n) < 00, for all n > N, which completes the proof.

After these verifications, an application of Theorem 2.9 in the preceding section
gives the desired conclusion. O

< Blt —to|™,
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Remark 3.2. For 3 = 0, we get an existence result which is an improvement of
Theorem 2 from [5].
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