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Representation theorem for convex effect algebras

S. Gudder, S. Pulmannová

Abstract. Effect algebras have important applications in the foundations of quantum
mechanics and in fuzzy probability theory. An effect algebra that possesses a convex
structure is called a convex effect algebra. Our main result shows that any convex effect
algebra admits a representation as a generating initial interval of an ordered linear space.
This result is analogous to a classical representation theorem for convex structures due
to M.H. Stone.
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1. Introduction

An algebraic structure called an effect algebra has recently been introduced for
investigations in the foundations of quantum mechanics ([3], [13], [14]). Equivalent
structures called D-posets and generalized orthoalgebras have also been studied
([8], [10], [11], [15], [20], [21]). Moreover, effect algebras play a fundamental role
in recent investigations of fuzzy probability theory ([1], [2], [4], [5], [18]). In the
quantum mechanical framework, the elements of an effect algebra P represent
quantum effects and these are important for quantum statistics and quantum
measurement theory ([3], [6], [7]). One may think of a quantum effect as an
elementary yes-no measurement that may be unsharp or imprecise. In the fuzzy
probability setting, elements of P represent fuzzy events which are statistical
events that may not be crisp or sharp. The quantum effects and fuzzy events
are then used to construct general quantum measurements (or observables) and
fuzzy random variables. The structure of an effect algebra is given by a partially
defined binary operation ⊕ that is used to form a combination a ⊕ b of effects
a, b ∈ P . The element a⊕ b represents a statistical combination of a and b whose
probability of occurrence equals the sum of the probabilities that a and b occur
individually.
The common examples of effect algebras that are employed in practice also pos-

sess a convex structure. For example, if a is a quantum effect and λ ∈ [0, 1], then
λa represents the effect a attenuated by a factor of λ. A similar interpretation
is given for fuzzy events. Then λa ⊕ (1 − λ)b is a generalized convex combina-
tion that can be constructed in practice. Due to the operational significance of
such combinations it seems desirable to investigate effect algebras that possess an
additional convex structure and we call them convex effect algebras.
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General convex structures have important applications to studies in color vi-
sion, decision theory, operational quantum mechanics and economics ([12], [16],
[17], [25], [26]). A classical representation theorem of M.H. Stone ([16], [24]) has
sometimes been useful in these studies. This theorem states that certain convex
structures can be represented as convex subsets of a real linear space. In this pa-
per, we present an analogous theorem for convex effect algebras. Although there
are some similarities between our proof and that of Stone, a much more delicate
argument must be used because we have to preserve the effect algebra structure
as well as the convex structure. Also, since our structure is richer than a con-
vex structure alone, we obtain a stronger theorem. In Stone’s theorem, a convex
structure is represented by a convex base of a positive cone K that generates an
ordered linear space (V,K). Our theorem states that a convex effect algebra can
be represented by an initial interval [θ, u] that generates an ordered linear space
(V,K). An interval [θ, u] in (V,K) has a natural effect algebra structure and we
call [θ, u] a linear effect algebra. A linear effect algebra is a special case of an
interval effect algebra which has recently been investigated ([14]).

2. Definitions and basic results

An effect algebra is an algebraic system (P, 0, 1,⊕) where 0, 1 are distinct ele-
ments of P and ⊕ is a partial binary operation on P that satisfies the following
conditions.

(E1) If a⊕ b is defined, then b⊕ a is defined and b⊕ a = a⊕ b.
(E2) If a⊕ b and (a⊕ b)⊕ c are defined, then b⊕ c and a⊕ (b⊕ c)are defined and

a⊕ (b⊕ c) = (a⊕ b)⊕ c.
(E3) For every a ∈ P there exists a unique a′ ∈ P such that a⊕ a′ is defined and

a⊕ a′ = 1.
(E4) If a⊕ 1 is defined, then a = 0.

We define a ≤ b if there exists a c ∈ P such that a ⊕ c = b. It can be shown
that (P, 0, 1,≤) is a bounded poset and a⊕ b is defined if and only if a ≤ b′ ([11],
[13]). If a ≤ b′, we write a ⊥ b. An important property of an effect algebra is the
cancellation law which states that a⊕ b = a⊕ c implies b = c. Moreover, it can
be shown that a′′ = a and that a ≤ b implies b′ ≤ a′ for every a, b ∈ P ([11], [13]).
An effect algebra P is convex if for every a ∈ P and λ ∈ [0, 1] ⊆ R there exists

an element λa ∈ P such that the following conditions hold.

(C1) If α, β ∈ [0, 1] and a ∈ P , then α(βa) = (αβ)a.
(C2) If α, β ∈ [0, 1] with α + β ≤ 1 and a ∈ P , then αa ⊥ βa and (α + β)a =

αa⊕ βa.
(C3) If a, b ∈ P with a ⊥ b and λ ∈ [0, 1], then λa ⊥ λb and λ(a⊕ b) = λa⊕ λb.
(C4) If a ∈ P , then 1a = a.

A map (λ, a) 7→ λa that satisfies (C1)–(C4) is an example of a bimorphism
from [0, 1] × P into P ([10]) and we call this map a convex structure on P .
Notice that 0a = 0 for every a ∈ P . Indeed, by (C2) and (C4) we have

0a⊕ a = (0 + 1)a = 1a = a = 0⊕ a
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so by the cancellation law 0a = 0.
The effect algebras that arise in practice are usually convex. For example, let

H be a complex Hilbert space and let E (H) be the set of operators on H that
satisfy 0 ≤ A ≤ I where we are using the usual ordering of bounded operators.
For A,B ∈ E (H), we write A ⊥ B if A + B ∈ E (H) and in this case we define
A⊕B = A+B. It is clear that (E (H), 0, I,⊕) is an effect algebra and we call E (H)
a Hilbert space effect algebra. Hilbert space effect algebras are important in
foundational studies of quantum mechanics ([6], [7], [9], [19], [22], [23]). For
λ ∈ [0, 1] and A ∈ E (H), λA is the usual scalar multiplication for operators.
This gives a convex structure on E (H) so E (H) becomes a convex effect algebra.
For another example, let (Ω,A ) be a measurable space and let E (Ω,A ) be the
set of measurable functions on Ω with values in [0, 1]. If we define ⊕ and scalar
multiplication λf analogously as in the previous example, we see that E (Ω,A ) is
a convex effect algebra. The elements of E (Ω,A ) are called fuzzy events and
they are the basic concepts in fuzzy probability theory ([1], [2], [4], [5], [18]).
We now consider a more general type of convex effect algebra called a linear

effect algebra. It is no accident that the previous two examples are linear effect
algebras because we shall show that any convex effect algebra is equivalent to a
linear effect algebra. A linear effect algebra is an initial interval in the positive
cone of an ordered linear space. We now give the precise definitions.
Let V be a real linear space with zero θ. A subset K of V is a positive cone

if R
+K ⊆ K, K +K ⊆ K and K ∩ (−K) = {θ}. For x, y ∈ V we define x ≤K y

if y − x ∈ K. Then ≤K is a partial order on V and we call (V,K) an ordered
linear space with positive cone K. We say that K is generating if V = K−K.
Let u ∈ K with u 6= θ and form the interval

[θ, u] = {x ∈ K: x ≤K u} .

For x, y ∈ [θ, u] we write x ⊥ y if x+y ≤K u and in this case we define x⊕y = x+y.
It is clear that ([θ, u], θ, u,⊕) is an effect algebra with x′ = u−x for every x ∈ [θ, u].
This is an example of an interval effect algebra ([14]). It is also easy to check that
[θ, u] is a convex subset of K. It follows that if λ ∈ [0, 1] and x ∈ [θ, u], then

λx = λx+ (1− λ)θ ∈ [θ, u].

A straightforward verification shows that (λ, x) 7→ λx is a convex structure on
[θ, u] so that [θ, u] is a convex effect algebra which we call a linear effect algebra.
We say that [θ, u] generates K if K = R

+[θ, u] and we say that [θ, u] generates
V if [θ, u] generates K and K generates V . Two ordered linear spaces (V1,K1)
and (V2,K2) are order isomorphic if there exists a linear bijection T : V1 → V2
such that T (K1) = K2.
Because of the associative law (E2), we do not have to write parentheses for

orthogonal sums of three or more elements. If a is an element of an effect algebra
and a⊕ a⊕ · · · ⊕ a is defined (n summands), then we denote this element by na.
Our first result summarizes some basic properties of a convex effect algebra.
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Lemma 2.1. Let P be a convex effect algebra. (i) If a ≤ b, then λa ≤ λb for
every λ ∈ [0, 1]. (ii) If 0 ≤ α ≤ β ≤ 1, then αa ≤ βa for every a ∈ P . (iii) If
α, β ∈ [0, 1] with α+ β ≤ 1, then αa ⊥ βb for every a, b ∈ P . (iv) For λ ∈ (0, 1),
λa = 0 if and only if a = 0. (v) If na is defined for n ∈ N and 0 ≤ λ ≤ 1/n,
then λ(na) = (λn)a. (vi) If na is defined for n ∈ N and λ ∈ [0, 1], then n(λa) is
defined and n(λa) = λ(na). (vii) If λ ∈ (0, 1] and λa = λb, then a = b. (viii) If
a 6= 0, α, β ∈ [0, 1] and αa = βa, then α = β.

Proof: (i) Since a⊕ c = b for some c ∈ P , we have by (C3) that

λa⊕ λc = λ(a⊕ c) = λb.

Hence, λa ≤ λb.

(ii) Applying (C2) gives

βa = [α+ (β − α)] a = αa⊕ (β − α)a.

Hence, αa ≤ βa.

(iii) By (C2), α1 ⊥ β1. Applying (i), we have αa ≤ α1 and βb ≤ β1. We
conclude that

αa ≤ α1 ≤ (β1)′ ≤ (βb)′.

Hence, αa ⊥ βb.

(iv) Since λ ≤ 1, by (ii) we have λ0 ≤ 10 = 0 so λ0 = 0. Conversely, suppose
λa = 0 and let n be the largest integer such that nλ ≤ 1. Then (n+ 1)λ > 1 so
that 1− nλ < λ. Since

(nλ)a = (λ+ · · ·+ λ)a = n(λa) = 0

and by (ii), (1− nλ)a = 0, we have

a = (nλ)a ⊕ (1− nλ)a = 0.

(v) Since na = a⊕ · · · ⊕ a (n summands) we have by (C3) that

λ(na) = λ(a⊕ · · · ⊕ a) = (λ+ · · ·+ λ)a = (nλ)a.

(vi) We proceed by induction on n. The result clearly holds for n = 1. Assume
the result holds for n ∈ N and that (n+1)a is defined. Then na is defined so n(λa)
is defined and n(λa) = λ(na). Since na ⊥ a, we have by (C3) that λ(na) ⊥ λa.
Hence, n(λa) ⊥ λa so that (n+ 1)(λa) is defined and applying (C3) gives

(n+ 1)(λa) = n(λa)⊕ λa = λ(na) ⊕ λa = λ(na⊕ a) = λ ((n+ 1)a) .

The result follows by induction.
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(vii) Let m/n ∈ (0, 1] be rational and suppose that (m/n)a = (m/n)b. Then

1

n
a =

1

m

(m
n

)
a =

1

m

(m
n

)
b =
1

n
b.

Hence,

a = n

(
1

n
a

)
= n

(
1

n
b

)
= b.

Thus, the result holds if λ is rational. Suppose that λ ∈ (0, 1] is irrational and let
0 < r < λ be rational. Letting α = r/λ we have that α ∈ (0, 1). Then if λa = λb
we conclude that

ra = (αλ)a = α(λa) = α(λb) = (αλ)b = rb.

Since r is rational, a = b.

(viii) Suppose that β > α. Then

(β − α)a⊕ αa = βa = αa

and by the cancellation law, (β−α)a = 0. Applying (iv) we conclude that a = 0,
which is a contradiction. Hence, β ≤ α and by symmetry α ≤ β. �

It follows from Lemma 2.1 (iii) that a convex effect algebra P is “convex” in
the following sense. If λ ∈ [0, 1] and a, b ∈ P , then λa ⊕ (1 − λ)b is defined and
hence is an element of P .
If P and Q are effect algebras, a map φ: P → Q is additive if a ⊥ b implies

that φ(a) ⊥ φ(b) and φ(a ⊕ b) = φ(a) ⊕ φ(b). An additive map φ that satisfies
φ(1) = 1 is called a morphism. A morphism φ: P → Q for which φ(a) ⊥ φ(b)
implies that a ⊥ b is called a monomorphism. A surjective monomorphism is
called an isomorphism. It is easy to show that if φ is an isomorphism, then φ
is injective and φ−1 is an isomorphism. If P and Q are convex effect algebras, a
morphism φ: P → Q is called an affine morphism if φ(λa) = λφ(a) for every
λ ∈ [0, 1], a ∈ P . It follows from Lemma 2.1 (iii) that an affine morphism preserves
convex combinations in the sense that if λ ∈ [0, 1] and a, b ∈ P , then

φ (λa⊕ (1− λ)b) = λφ(a) ⊕ (1 − λ)φ(b).

An isomorphism φ: P → Q that is affine is called an affine isomorphism and
if such a φ exists, we say that P and Q are affinely isomorphic. Notice that if
φ: P → Q is an affine isomorphism, then φ−1: Q → P is also an affine isomor-
phism. Indeed, let λ ∈ [0, 1] and b ∈ Q. Then there exists an a ∈ P such that
φ(a) = b so that φ(λa) = λb. Hence,

φ−1(λb) = λa = λφ−1(b).
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Lemma 2.2. If P is a convex effect algebra, Q is an effect algebra and φ: P → Q
is an isomorphism, then there exists a unique convex structure on Q such that φ
is an affine isomorphism.

Proof: For λ ∈ [0, 1], b ∈ Q define λb = φ(λa) where φ(a) = b. Then φ(λa) =
λφ(a) so all we need to show is that (λ, b) 7→ λb is a convex structure on Q. To
verify (C1), let α, β ∈ [0, 1] and b ∈ Q. Then βb = φ(βa) where φ(a) = b and
α(βb) = φ (α(βa)). Hence,

α(βb) = φ (α(βa)) = φ ((αβ)a) = (αβ)φ(a) = (αβ)b.

To verify (C2), let α, β ∈ [0, 1] with α + β ≤ 1 and let b ∈ Q. Then αb = φ(αa)
and βb = φ(βa) where φ(a) = b. Since αa ⊥ βa, we have that φ(αa) ⊥ φ(βa).
Hence, αb ⊥ βb and

αb⊕ βb = φ(αa) ⊕ φ(βa) = φ(αa⊕ βb) = φ ((α+ β)a)

= (α+ β)φ(a) = (α + β)b.

To verify (C3), let c, d ∈ Q with c ⊥ d and let λ ∈ [0, 1]. We then have λc = φ(λa),
λd = φ(λb) where φ(a) = c and φ(b) = d. Since φ is an isomorphism, a ⊥ b and
hence λa ⊥ λb and λ(a⊕ b) = λa⊕ λb. Thus, λc ⊥ λd and

λc⊕ λd = φ(λa) ⊕ φ(λb) = φ(λa⊕ λb) = φ (λ(a⊕ b))

= λφ(a ⊕ b) = λ [φ(a)⊕ φ(b)] = λ(c⊕ d).

Finally, (C4) holds because for b = φ(a) ∈ Q, we have

1b = φ(1a) = φ(a) = b.

To prove uniqueness, suppose that (λ, b) 7→ λ · b is a convex structure on Q for
which φ: P → Q is an affine isomorphism. Then if φ(a) = b, we have

λ · b = φ(λa) = λb.
�

3. Representation theorem

We now prove a representation theorem for convex effect algebras. This theorem
is analogous to a representation theorem for convex structures due to M.H. Stone
([16], [24]). The beginning of the proof is similar to that of Stone’s theorem but a
more delicate argument must be used later because we have to preserve the effect
algebra structure as well as the convex structure.
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Theorem 3.1. If (P, 0, 1,⊕) is a convex effect algebra, then P is affinely iso-
morphic to a linear effect algebra [θ, u] that generates an ordered linear space
(V,K) and the effect algebra order ≤ on [θ, u] coincides with linear space order
≤K restricted to [θ, u]. Moreover, (V,K) is unique in the sense that if P is affinely
isomorphic to a linear effect algebra [θ1, u1] that generates (V1,K1), then (V1,K1)
is order isomorphic (V,K).

Proof: Define the set K̂ ⊆ R × P by

K̂ = {(α, a): α ≥ 1, a ∈ P} .

For (α, a), (β, b) ∈ K̂, define the relation ∼ on K̂ by (α, a) ∼ (β, b) if β−1a =
α−1b. Clearly, ∼ is reflexive and symmetric. To prove transitivity, suppose that
(α, a) ∼ (β, b) and (β, b) ∼ (γ, c). Then β−1a = α−1b and γ−1b = β−1c. Hence,

β−1(γ−1a) = (γ−1α−1)b = β−1(α−1c)

and by Lemma 2.1 (vii) we have γ−1a = α−1c. Thus, (α, a) ∼ (γ, c) so ∼ is

an equivalence relation on K̂. Denote the equivalence class containing (α, a) by

[(α, a)] and let K̃ =
{
[(α, a)] : (α, a) ∈ K̂

}
. For β ≥ 0, define

β [(α, a)] =

{
[(βα, a)] if β ≥ 1,

[(α, βa)] if β ≤ 1.

To show that this operation is well defined, suppose that (α1, a1) ∼ (α, a). If

β ≥ 1, then (βα1, a1) ∼ (βα, a) because α
−1a1 = α−11 a so that (β−1α−1)a1 =

(β−1α−11 )a. If β ≤ 1, then (α1, βa1) ∼ (α, βa) because α
−1(βa1) = α

−1
1 (βa).

We also define an operation + on K̃ by

[(α, a)] + [(β, b)] =

[(
α+ β,

α

α+ β
a⊕

β

α+ β
b

)]
.

To show that this operation is well defined, suppose that (α1, a1) ∼ (α, a) and

(β1, b1) ∼ (β, b). Then α
−1a1 = α

−1
1 a and β−1b1 = β

−1
1 b. Hence,

1

α+ β

(
α1

α1 + β1
a1 ⊕

β1
α1 + β1

b1

)

=

(
α1

α1 + β1

)(
α

α+ β

)
α−1a1 ⊕

(
β1

α1 + β1

) (
β

α+ β

)
β−1b1

=

(
α1

α1 + β1

)(
α

α+ β

)
α−11 a⊕

(
β1

α1 + β1

) (
β

α+ β

)
β−11 b

=
1

α1 + β1

(
α

α+ β
a⊕

β

α+ β
b

)
.



652 S.Gudder, S. Pulmannová

It follows that
(
α1 + β1,

α1
α1 + β1

a1 ⊕
β1

α1 + β1
b1

)
∼

(
α+ β,

α

α+ β
a⊕

β

α+ β
b

)
.

We now show that K̃ forms an abstract cone with a zero ([16], [24]). Notice

that (α, a) ∼ (1, 0) if and only if a = 0 and let θ̃ = [(1, 0)]. To show that K̃ is an

abstract cone with zero θ̃, we must verify that the following conditions hold for

every X,Y, Z ∈ K̃ and α, β ≥ 0.

(1) X + Y = Y +X (2) X + θ̃ = X
(3) X + (Y + Z) = (X + Y ) + Z (4) If X + Y = X + Z, then Y = Z
(5) α(X + Y ) = αX + αY (6) (α + β)X = αX + βX
(7) α(βX) = (αβ)X (8) 1X = X

It is clear that (1) and (2) hold. To show that (3) holds, suppose that X = [(α, a)],
Y = [(β, b)] and Z = [(γ, c)]. We then have

X + (Y + Z) = [(α, a)] + ([β, b] + [γ, c])

= [(α, a)] +

[(
β + γ,

β

β + γ
b⊕

γ

β + γ
c

)]

=

[(
α+ β + γ,

α

α+ β + γ
a⊕

(
β

α+ β + γ
b⊕

γ

α+ β + γ
c

))]

=

[(
α+ β + γ,

(
α

α+ β + γ
a⊕

β

α+ β + γ
b

)
⊕

γ

α+ β + γ
c

)]

=

[(
α+ β,

α

α+ β
a⊕

β

α+ β
b

)]
+ [(γ, c)]

= (X + Y ) + Z.

To show that (4) holds, if X + Y = X + Z, we have

[(
α+ β,

α

α+ β
a⊕

β

α+ β
b

)]
=

[(
α+ γ,

α

α+ γ
a⊕

γ

α+ γ
c

)]
.

We conclude that

α

(α + γ)(α+ β)
a⊕

β

(α + γ)(α+ β)
b =

α

(α + β)(α+ γ)
a⊕

γ

(α + β)(α+ γ)
c.

It follows from the cancellation law that

γ−1

(α + γ)(α+ β)
b =

β−1

(α + β)(α+ γ)
c.
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By Lemma 2.1 (vii) we obtain γ−1b = β−1c so that

Y = [(β, b)] = [(γ, c)] = Z.

It is clear that (5) holds. To verify (6), we have three cases.

Case 1. If β, γ ≥ 1, we have

βX + γX = β [(α, a)] + γ [(α, a)] = [(βα, a)] + [(γα, a)]

=

[(
βα+ γα,

β

β + γ
a⊕

γ

β + γ
a

)]
= [(βα + γα, a)]

= (β + γ) [(α, a)] = (β + γ)X.

Case 2. If β ≥ 1, γ ≤ 1, we have

βX + γX = [(βα, a)] + [(α, γa)] =

[(
βα + α,

β

β + 1
a⊕

1

β + 1
γa

)]

=

[(
βα + α,

β + γ

β + 1
a

)]
= [(βα+ γα, a)]

= (β + γ) [(α, a)] = (β + γ)X.

Case 3. If β, γ ≤ 1 and β + γ ≤ 1, we have

βX + γX = [(α, βa)] + [(α, γa)] =

[(
2α,
1

2
βa⊕

1

2
γa

)]

=

[(
2α,
1

2
(β + γ)a

)]
= [(α, (β + γ)a)]

= (β + γ) [(α, a)] = (β + γ)X.

If β, γ ≤ 1 and β + γ ≥ 1, we have

βX + γX =

[(
2α,
1

2
(β + γ)a

)]
= [((β + γ)α, a)]

= (β + γ) [(α, a)] = (β + γ)X.

Finally, it is clear that (7) and (8) hold.

We next show that K̃ can be extended to a real linear space. Let

V0 =
{
(X,Y ): X,Y ∈ K̃

}
.

Define the relation ≈ on V0 by (X1, Y1) ≈ (X,Y ) if X1 + Y = X + Y1. It is clear
that ≈ is reflexive and symmetric. To prove transitivity, suppose that (X1, Y1) ≈
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(X,Y ) and (X,Y ) ≈ (X2, Y2). Then X1 + Y = X + Y1 and X + Y2 = X2 + Y .
Hence,

X1 + Y2 + Y = X + Y1 + Y2 = X2 + Y1 + Y

and it follows from (4) that X1+Y2 = X2+Y1. Thus, (X1, Y1) ≈ (X2, Y2) and ≈
is an equivalence relation on V0. Denote the equivalence class containing (X,Y )
by [(X,Y )] and let

V = {[(X,Y )] : (X,Y ) ∈ V0} .

If (X,Y ) ≈ (θ̃, θ̃), then
X = X + θ = Y + θ = Y

so that [
(θ̃, θ̃)

]
=

{
(X,X): X ∈ K̃

}
.

Define addition on V by

[(X,Y )] + [(X1, Y1)] = [(X +X1, Y + Y1)] .

To show that + is well defined, suppose that (X2, Y2) ≈ (X,Y ) and (X3, Y3) ≈
(X1, Y1). Then X2 + Y = X + Y2 and X3 + Y1 = X1 + Y3. Hence,

X2 +X3 + Y + Y1 = X +X1 + Y2 + Y3

so that
(X2 +X3, Y2 + Y3) ≈ (X +X1, Y + Y1).

It is now easy to verify that (V,+) is an abelian group with zero θ =
[
(θ̃, θ̃)

]
. De-

fine a scalar multiplication by real numbers as follows. If λ ≥ 0, then λ [(X,Y )] =
[(λX, λY )] and if λ < 0, then λ [(X,Y )] = [((−λ)Y, (−λ)X)]. It is straightforward
to show that this operation is well defined and using Properties (1)–(8) that V is
a real linear space.
We now define K ⊆ V by

K =
{[
(X, θ̃)

]
: X ∈ K̃

}
.

To show that K is a positive cone in V it is clear that R
+K ⊆ K and K+K ⊆ K.

To show that K ∩ (−K) = {0}, suppose [(X,Y )] ∈ K ∩ (−K). Then [(X,Y )] ∈ K
and

[(Y,X)] = − [(X,Y )] ∈ K.

Hence, there exist Z,Z1 ∈ K such that [(X,Y )] =
[
(Z, θ̃)

]
and [(Y,X)] =

[
(Z1, θ̃)

]
. It follows that X = Z+Y and Y = Z1+X . Then X = Z+Z1+X and
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applying (4) gives Z + Z1 = θ̃. If Z = [(α, a)] and Z1 = [(α1, a1)] we conclude
that (

α+ α1,
α

α+ α1
a⊕

α1
α+ α1

a1

)
∼ (1, 0).

Hence,
α

α+ α1
a⊕

α1
α+ α1

a1 = 0.

It follows from Lemma 2.1 (iv) that a = a1 = 0. Thus, Z = θ̃ so [(X,Y )] = θ. We
conclude that (V,K) is an ordered linear space. Since any [(X,Y )] ∈ V has the
form

[(X,Y )] =
[
(X, θ̃)

]
+

[
(θ̃, Y )

]
=

[
(X, θ̃)

]
−

[
Y, θ̃)

]
,

it follows that V = K −K so K generates V .

Define u ∈ K by u =
[(
[(1, 1)] , θ̃

)]
and form the interval [θ, u] ⊆ K. We

first show that u 6= θ. If u = θ, then
(
[(1, 1)] , θ̃

)
≈ (θ̃, θ̃) so that [(1, 1)] = θ̃ =

[(1, 0)]. Hence, (1, 1) ∼ (1, 0) and 1 = 0 which is a contradiction. Thus, [θ, u] is
a linear effect algebra under the induced partial operation ⊕. We next show that
R
+[θ, u] = K so that [θ, u] generates (V,K). It is clear that R

+[θ, u] ⊆ K. For

the opposite inclusion, suppose that
[
(X, θ̃)

]
∈ K where X = [(α, a)]. Then

α−1
[
(X, θ̃)

]
=

[
(α−1X, θ̃)

]
=

[(
[α, α−1a], θ̃

)]
=

[(
[(1, a)] , θ̃

)]
.

Hence,

α−1
[
(X, θ̃)

]
+

[([
(1, a′)

]
, θ̃

)]
=

[(
[(1, a)] , θ̃

)]
+

[([
(1, a′)

]
, θ̃

)]

=
[(
[(1, a)] +

[
(1, a′)

]
, θ̃

)]

=

[([(
2,
1

2
a⊕
1

2
a′

)]
, θ̃

)]

=

[([
2,
1

2
1

]
, θ̃

)]
=

[(
[(1, 1)] , θ̃

)]
= u.

It follows that α−1
[
(X, θ̃)

]
≤K u so that α−1

[
(X, θ̃)

]
∈ [θ, u].

To show that P is affinely isomorphic to [θ, u] we define φ: P → [θ, u] by φ(a) =[(
[(1, a)] , θ̃

)]
. It follows from the last computation in the previous paragraph

that φ(a) is indeed in [θ, u]. We now show that φ is an affine isomorphism. If
a ⊥ b, then

φ(a) + φ(b) =
[(
[(1, a)] , θ̃

)]
+

[(
[(1, b)] , θ̃

)]

=

[([(
2,
1

2
a⊕
1

2
b

)]
, θ̃

)]
=

[(
[(1, a⊕ b)] , θ̃

)]

= φ(a⊕ b).
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Hence, φ is additive. It is clear that φ(1) = u so φ is a morphism. If λ ∈ [0, 1]
and a ∈ P , then

φ(λa) =
[(
[(1, λa)] , θ̃

)]
=

[(
λ [(1, a)] , θ̃

)]
= λ

[(
[(1, a)] , θ̃

)]
= λφ(a)

so φ is an affine morphism. Suppose that φ(a) + φ(b) = φ(c). We then have

[(
[(1, a)] + [(1, b)] , θ̃

)]
=

[(
[(1, c)] , θ̃

)]
.

It follows that [(
2,
1

2
a⊕
1

2
b

)]
= [(1, c)]

and 12 a ⊕
1
2 b =

1
2 c. Hence,

1
2 a ⊕

1
2 b ⊥ 1

2 a ⊕ 1
2 b and we conclude that a ⊥ b.

Therefore, if we can prove that φ is surjective, then it follows that φ is a monomor-
phism and hence φ is an affine isomorphism.
We now show that if φ(a) ≤K φ(b), then there exists a c ∈ P such that

φ(a) + φ(c) = φ(b). Since φ(a) ≤K φ(b), there exists an x ∈ K such that

φ(b) − φ(a) = x. Suppose that x =
[(
[(α, c)] , θ̃

)]
. If α = 1, then x = φ(c) and

we are finished so suppose that α > 1. Let n ∈ N with α ≤ n and let d = (α/n)c.
Then n ≥ 2, d ∈ P and

φ(a) + nφ(d) = φ(a) + nφ
(α
n
c
)
= φ(a) + αφ(c) = φ(a) + x = φ(b).

Now 1
n
a ⊥ d because

φ

(
1

n
a

)
+ φ(d) =

1

n
φ(a) + φ(d) =

1

n
φ(b) = φ

(
1

n
b

)
.

Moreover,
(
1
n
a⊕ d

)
⊥

(
1
n
a⊕ d

)
because

φ

(
1

n
a⊕ d

)
+ φ

(
1

n
a⊕ d

)
= 2φ

(
1

n
b

)
= φ

(
1

n
b

)
+ φ

(
1

n
b

)
= φ

(
2

n
b

)
.

It follows from associativity that 2d = d ⊕ d, 1
n
a ⊕ 2d and 2

n
a ⊕ 2d are defined

in P . If n ≥ 3, then (
2

n
a⊕ 2d

)
⊥

(
1

n
a⊕ d

)

because

φ

(
2

n
a⊕ 2d

)
+ φ

(
1

n
a⊕ d

)
= 3φ

(
1

n
b

)
= φ

(
3

n
b

)
.
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As before, 3d, 2
n
a ⊕ 3d and 3

n
a ⊕ 3d are defined in P . Continuing this process,

we conclude that nd is defined in P . Hence,

φ(a) + φ(nd) = φ(a) + nφ(d) = φ(b).

For arbitrary x, y ∈ [θ, u], it is clear that x ≤ y implies x ≤K y. It follows that if
φ is surjective, then the order ≤ and ≤K coincide on [θ, u].

Finally, we show that φ is surjective. Let x ∈ [θ, u] where x =
[(
[(α, a)] , θ̃

)]
.

If α = 1, then x = φ(a) and we are finished so suppose that α > 1. Let n ∈ N

with α ≤ n and let b = α

n
a ∈ P . Then

nφ(b) = nφ
(α
n
a
)
= αφ(a) = x ≤K u.

We now show by induction on n that if nφ(b) ≤K u, then nb is defined in P .
The result clearly holds for n = 1. Suppose the result holds for n and assume
that (n + 1)φ(b) ≤K u. Then nφ(b) ≤ (n + 1)φ(b) ≤K u so by the induction
hypothesis, nb is defined in P . Since φ is a morphism, we have

φ(nb) = nφ(b) ≤K u− φ(b) = φ(b′).

It follows that there exists a c ∈ P such that

φ(nb) + φ(c) = φ(b′) = u− φ(b).

Hence,
φ(nb) + φ(b) = u− φ(c) = φ(c′).

We conclude from our previous work that nb ⊥ b so nb ⊕ b is defined. Hence,
(n + 1)b = nb ⊕ b is defined which completes the induction proof. Thus, nb ∈ P
and

x = nφ(b) = φ(nb).

Therefore, φ is surjective.
To prove uniqueness, suppose φ1: P → [θ1, u1] is an affine isomorphism, where

[θ1, u1] is a linear effect algebra that generates (V1,K1). It is easy to check that
ψ = φ1 ◦ φ

−1 is an affine bijection from [θ, u] onto [θ1, u1]. Define T : V → V1 as
follows. If x ∈ V , then x has the form x = αy−βz where α, β ≥ 0 and y, z ∈ [θ, u].
We define T (x) by

T (x) = αψ(y)− βψ(z).

To show that T is well defined, suppose that

αy − βz = α1y1 − β1z1

where α1, β1 ≥ 0 and y1, z1 ∈ [θ, u]. Then

αy + β1z1 = α1y1 + βz.
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Letting γ = α+ β1 + α1 + β, we have

α+ β1
γ

(
α

α+ β1
y +

β1
α+ β1

z1

)
=
α1 + β

γ

(
α1

α1 + β
y1 +

β

α1 + β
z

)
.

Hence,

α+ β1
γ

(
α

α+ β1
ψ(y) +

β1
α+ β1

ψ(z1)

)

=
α1 + β

γ

(
α1

α1 + β
ψ(y1) +

β

α1 + β
ψ(z)

)
.

It follows that
αψ(y)− βψ(z) = α1ψ(y1)− β1ψ(z1).

It is straightforward to check that T is an order isomorphism. �
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