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Inverse distributions: the logarithmic case

Dario Sacchetti

Abstract. In this paper it is proved that the distribution of the logarithmic series is not
invertible while it is found to be invertible if corrected by a suitable affinity. The inverse
distribution of the corrected logarithmic series is then derived.
Moreover the asymptotic behaviour of the variance function of the logarithmic dis-

tribution is determined.
It is also proved that the variance function of the inverse distribution of the corrected

logarithmic distribution has a cubic asymptotic behaviour.
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1. Introduction

Let µ be a positive Radon measure on R such that µ is not concentrated in a
single point. We denote by

Lµ(θ) =
∫

R
eθxµ(dx) the Laplace transform of µ,

Dµ = {θ ∈ R : Lµ(θ) < ∞} the domain of Lµ(θ),
Θµ the interior of Dµ.

Suppose that Θµ 6= ∅; Θµ is an interval.
LetM be the set of measures described above.

We denote by kµ(θ) = logLµ(θ), θ ∈ Θµ the cumulant function of µ.
kµ(θ) is known to be strictly convex and analytic in Θµ (Letac and Mora (1990)).
For all θ ∈ Θµ consider the probability measure Pµ(θ) = exp(θx − kµ(θ))µ(dx).
The set

Pµ = {Pµ(θ), θ ∈ Θµ}

is called the natural exponential family (NEF) generated by µ. We also say that
µ is a basis of Pµ.
Now we recall the concepts of inverse measure and inverse distribution (Letac

(1986), Definition 1.1 and Proposition 1.2, and Letac and Mora (1990), § 5), where
“reciprocal” (reciprocité in French language) is used instead of “inverse”.

Definition 1.1. Let µ and µ̃ ∈ M. µ̃ is the inverse measure of µ if there exists
a non empty interval Θ∗

µ̃:

k′µ̃(θ) > 0 ∀ θ ∈ Θ∗

µ̃(1.1)

−kµ(−kµ̃(θ)) = θ ∀ θ ∈ Θ∗

µ̃.(1.2)
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In this case µ is said to be invertible.

The term inverse measure is justified by the expression (1.2), that is equivalent
to

(1.3) kµ̃(t) = (−kµ(−t))−1,

where f−1 denotes the inverse function of f , i.e. f ◦f−1=f−1◦f = Identity function.
Let Θ∗

µ be the image of Θ
∗

µ̃ by the function −kµ̃(θ). Θ
∗
µ is an interval and, for

(1.1), by differentiating (1.2), it turns out that k′µ(θ) > 0, ∀ θ ∈ Θ∗
µ. It follows

that if µ̃ is the inverse measure of µ, then µ is the inverse measure µ̃.
It is remarkable that the inverse distribution of a NEF does not necessarily exist.

Example 1.

Let µ = δ1 + δ2, then kµ(θ) = log
(

eθ +e2θ
)

and from (1.3)

kµ̃(θ) = log

(

eθ

2
+ e

θ

2

√

eθ

4
+ 1

)

, θ ∈ R.

It follows that µ̃ = 12δ1 +
∑+∞

h=0

(1/2
h

)

1
4h

δh+ 1
2

, i.e. µ̃ is not a positive measure.

Now if we consider the measure µ1 = δ0+ δ1, i.e. the image of µ by the affinity
ϕ(x) = x − 1, it is easy to see that µ1 is invertible and µ̃1 =

∑+∞
n=1 δn.

Regarding the probability distribution, we have the following definition:

Definition 1.2. Let µ, µ̃ ∈ M and let Pµ and Pµ̃ be the corresponding generated

NEF.

Pµ̃ is called the inverse of Pµ if µ̃ is the inverse measure of µ. In this case Pµ is

also said to be invertible.

A sufficient condition for two NEFs to be one the inverse of the other is that their
cumulant functions verify (1.1) and (1.2).
The concept of inverse distribution is due to Tweedie (1945).
The most common example is represented by the Gaussian distribution and its

inverse, known as the Inverse Gaussian.
Other interesting examples are:

- the binomial distribution of parameters (p, N). Its inverse is the distribu-
tion of a random variable X/N , with X being geometrically distributed
with parameter p;
- the Gamma distribution of parameters (p, N), N known. Its inverse is the
distribution of a random variable X/N , where X is a Poisson of parame-
ter p.

For this and other examples see Seshadri (1993), Cap. 5.
The problem of the invertibility of a distribution can be discussed also using the
variance function, that we therefore recall.
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Let: µ ∈ M, m = m(θ) = k′µ(θ), θ ∈ Θµ and Mµ = k′µ(Θµ), i.e. Mµ is the image

of Θµ by the function k′µ.

From the strict convexity of kµ(θ) it follows that k′µ(θ) is strictly increasing;

hence m(θ) is also one to one between Θµ and Mµ. Let θ(m) be the inverse
function of m(θ); m provides Pµ(θ) with a new parametrization, named mean-
parametrization (Barndorff-Nielsen (1978), p. 121).
We have the following definition (Morris (1982)).

Definition 1.3. The function Vµ(m) = k′′µ(θ(m)), m ∈ Mµ, is called the variance

function of the NEF Pµ.

It is remarkable that the variance function Vµ(m) and its domain Mµ charac-
terize the natural exponential family.
Morris (1982) proved that the variance function of only six NEFs, among which
the most widely used (normal, gamma, binomial, negative binomial), is a polyno-
mial of degree less or equal to two. Later the NEFs, whose variance function is
a polynomial of degree three, has been classified in six types (Mora (1986), and
Letac and Mora (1990)).
The variance function has been extensively studied with the aim of characterizing
those functions that can be the variance function of some NEF (Letac (1991)).
In the following theorem (Letac and Mora (1990)) the behaviour of the variance

function, with respect to an affinity, is described.

Theorem 1.1. Let φ(x) = ax + b, a 6= 0 and Pµ be the NEF generated by µ.
Denote by µ1 = φ∗µ the image measure of µ by φ; then

(a) kµ1(θ) = bθ + kµ(aθ) ∀ θ ∈ Θµ,

(b) Mµ1 = φ(Mµ),

(c) Vµ1 = a2Vµ

(

m−b
a

)

∀m ∈ Mµ.

The following theorem analyzes the behaviour of the variance function in the
context of inverse distributions (Letac and Mora (1990)).

Theorem 1.2. Let Pµ be the NEF generated by µ and Pµ̃ its inverse; define

M+
µ =Mµ ∩ (0,+∞) and M+

µ̃ =Mµ̃ ∩ (0,+∞). Then

(a) M+
µ 6= ∅ and M+

µ̃ 6= ∅ and 1m is a one to one mapping between M+
µ and

M+
µ̃ ,

(b) Vµ̃(m) = m3Vµ
(

1
m

)

∀m ∈ M+
µ .

We observe that point (b) of Theorem 1.2 shows that the set of cubic variance
is closed under invertibility.
Sometimes this theorem allows to face and solve the inverting problem in a

different way, because, computing first the variance function of the distribution
to be inverted and then deriving, by means of Theorem 1.2, the variance function
of the inverse distribution, the corresponding distribution is identified.



788 D. Sacchetti

As an example, consider the measure µ = δ1 + δ2 of Example 1. Vµ(m) =
(m−1)(2−m) andMµ = (1, 2), then from Theorem 1.2 Vµ̃(m) = m(1−m)(2m−1)
andMµ̃ = (1/2, 1) should hold, but a NEF with cubic variance and limited domain
does not exist (Seshadri (1993)).
Moreover there are measures such that the variance function of the NEF they
generate is very difficult to be computed. An example of this kind of measures is
the logarithmic measure.
In this paper starting from a result given in Sacchetti (1992), first we prove in

Theorem 2.1 that the logarithmic series distribution (L.S.D.) is not invertible, then
in Theorem 2.3 we show that a measure µ ∈ M defined on 1, 0,−1,−2,−3,−4, . . .
is invertible and we derive its inverse measure.
It is worth observing that the invertibility of this kind of measure µ is well-

known and has the following probabilistic interpretation: consider the random
walk in Z ruled by an element of the exponential family concentrated on 1, 0,−1,
−2, . . . , then the first passage time of 1 gives a base for the inverse exponential
family (Letac and Mora (1990), Theorem 5.6, p. 27). Anyway the proof of Theo-
rem 2.3 follows from the Lagrange’s formula (Theorem 2.2) and it does not rely on
the martingale theory as Theorem 5.6, quoted above, does; moreover the explicit
computation of the inverse measure is provided by this theorem.
In Corollary 2.1 the results of Theorem 2.3 are applied to the logarithmic

measure corrected with a suitable affinity: the family generated by the inverse
measure of the corrected logarithmic measure is called Inverse Logarithmic Series
distribution (I.L.S.D.).
In Section 3, Theorems 3.1 and 3.2, we prove that the variance functions of

L.S.D. and I.L.S.D. are infinity, as m → +∞, of the same order as m2 logm and
αm3, α > 0 respectively.

2. Logarithmic measure

Let

µ =

+∞
∑

n=1

1

n
δn

where δn is the Dirac function in n ∈ N.
The logarithmic series distribution (L.S.D.) is the NEF generated by µ, i.e. it

is defined as follows (Johnson and Kotz (1969)):

Pµ(θ) =

+∞
∑

n=1

−
1

log(1− θ)

θn

n
δn.

Theorem 2.1. If µ =
∑+∞

n=1
1
nδn, then µ is not invertible.

Proof: Let

µ̃ = δ1 +
1

2
δ0 +

+∞
∑

n=1

(−1)n−1
Bn

(2n)!
δ
−(2n−1)
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where the Bn are known as Bernoulli numbers and Bn > 0, ∀n ∈ N; µ̃ is a
nonpositive measure. We will show that µ̃ verifies (1.1) and (1.2).

From Fichtenholz (1970) it is known that the series
∑+∞

n=1(−1)
n−1 Bn

(2n)!
x2n−1 has

convergence radius 2π > 0 and that

(2.1) 1−
1

2
x+

+∞
∑

n=1

(−1)n−1
Bn

(2n)!
x2n =

x

ex − 1
if |x| < 2π.

Hence we have (Guest (1991), Proposition 45.2) that

µ̃ = δ1 +
1

2
δ0 +

+∞
∑

n=1

(−1)n−1
Bn

(2n)!
δ
−(2n−1)

is term by term Laplace transformable and

Lµ̃ = eθ +
1

2
+

+∞
∑

n=1

(−1)n−1
Bn

(2n)!
e−(2n−1)θ if | e−θ | < 2π.

Then, substituting x with − e−θ in (2.1) and multiplying for eθ we have

Lµ̃(θ) =
1

1− e− e
−θ
if | e−θ | < 2π.

Then Θµ̃ = (− log 2π,+∞) and

kµ̃(θ) = − log(1 − e− e
−θ

) if θ ∈ (− log 2π,+∞).

We have that k′µ̃ > 0, ∀ θ ∈ (− log 2π,+∞), i.e. that (1.1) is satisfied.

Since kµ(θ) = − log
[

− log(1− eθ)
]

, Θµ = (−∞, 0) and

−kµ
(

−kµ̃(θ)
)

= θ ∀ θ ∈ (− log 2π,+∞),

that is expression (1.2), the theorem is proved. �

Before showing the main result of this section, we recall the following theorem
(Dieudonné (1971)).

Theorem 2.2 (Lagrange’s formula). Let g be an analytic function in (−r, r),
r > 0 and g(0) 6= 0. Then there exist an R > 0 and an analytic function t = t(w)
in (−R, R) such that

t = wg(t) ∀w ∈ (−R, R).

Furthermore, if F is analytic on (−R, R), then ∀w ∈ (−R, R) we have that

F (t) = F (0) +

+∞
∑

n=1

wn

n!

[

(

d

dz

)n−1

{F ′(z)(g(z))n}

]

z=0

.

In the following remark we provide a more suitable definition of invertibility.
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Remark 2.1. Let µ ∈ M and fµ(t) = Lµ(log t); fµ is called the generating

function of µ. The domain of fµ is Iµ = {t ∈ R
+ : log t ∈ Θµ}. We observe that

Iµ is an interval and that fµ(t) > 0 in Iµ.

From Definition 1.1 it follows that µ̃ ∈ M is the inverse measure of µ if:

there exists a non empty interval (a, b) ∈ R
+ such that(2.2)

f ′

µ̃(t) > 0 ∀ t ∈ (a, b),

fµ̃(t) =

(

1

fµ
(

1
t

)

)

−1

.(2.3)

We just observe that the condition (2.3) easily follows from (1.3).

Theorem 2.3. Let µ ∈ M; µ =
∑+∞

n=−1 a−nδ−n and a1 > 0. Then µ is invertible
and

(2.4) µ̃ =

+∞
∑

n=1

bn

n!
δn

where

(2.5) bn =







Dn−1





+∞
∑

n=−1

a−ntn+1





n




t=0

.

Proof: µ ∈ M then: an ≥ 0, n = −1, 0, 1, 2, . . . , the integer series
∑+∞

n=0 a−nzn

has convergence radius r > 0, Lµ(θ) =
∑+∞

n=−1 a−n e
−nθ, Θµ = (− log r,+∞)

and the generating function of µ is fµ(t) =
∑+∞

n=−1 a−nt−n with t > 1
r .

Let

(2.6) g(t) =

+∞
∑

n=−1

a−ntn+1;

we observe that the convergence radius of series (2.6) is r and that, by hypothesis,
g(0) = a1 6= 0, then for Theorem 2.2 with F being the identity function, there
exists R > 0 and an analytic function t = t(w) in (−R, R) such that

(2.7) t − wg(t) = 0 ∀w ∈ (−R, R).

Furthermore we have

(2.8) t = t(w) =

+∞
∑

n=1

wn

n!
bn, w ∈ (−R, R)
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where

bn =
{

Dn−1 (g(t))n
}

t=0
=

{

Dn−1

(

+∞
∑

n=1

a−ntn+1

)n}

t=0

, that is (2.5).

We notice that bn ≥ 0 ∀n ∈ N because a−n ≥ 0, n = −1, 0, 1, . . . .
On the other hand g(t) = tfµ

(

1
t

)

, ∀ t ∈ (0, r) and from (2.8) it follows that
t = t(w) > 0 ∀w ∈ (0, R). Hence from (2.7) and (2.d6) we have that:

(2.9)
1

fµ
(

1
t

) = w ∀w ∈ (0, R),

that is the function t = t(w) =
∑+∞

n=1 bn
wn

n! is the inverse function of 1/
[

fµ
(

1
t

)]

.

It can be easily seen that t′(w) > 0 ∀w ∈ (0, R) and that t = t(w) is the generating

function of the measure µ̃ where µ̃ =
∑+∞

n=1
bn

n! δn.

µ̃ belongs to M because bn ≥ 0 ∀n ∈ N and the series
∑+∞

n=1
bn

n!w
n has conver-

gence radius R > 0; furthermore µ̃ satisfies the expressions (2.2) and (2.3), that
is µ̃ is the inverse measure of µ. �

Corollary 2.1. Let µ =
∑+∞

n=1
1
nδn be the logarithmic measure, φ(x) = −x+ 2

and let µ1 = φ∗µ be the image measure of µ by φ, i.e. µ1 =
∑+∞

n=1
1
nδ−n+2; then

µ1 is invertible and its inverse measure is

(2.10) µ̃1 =

+∞
∑

n=1

an

n
δn

where an is defined as follows

(2.11) an =
∑

ki∈N

k1+...+kn=n−1

n
∏

i=1

1

ki + 1
.

Proof: From Theorem 2.3 it follows that µ1 is invertible and its inverse is

µ̃1 =

+∞
∑

n=1

bn

n!
δn

where

bn =

{

Dn−1
(

tfµ

(

1

t

))n}

t=0
.
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Since tfµ
(

1
t

)

=
∑+∞

n=1
1
n tn−1 =

∑+∞
n=0

1
n+1 t

n, it turns out that
(

tfµ
(

1
t

))n
=

∑+∞
n=0 cntn where

cn =
∑

ki∈N

k1+...+kn=n

n
∏

i=1

1

ki + 1
.

Then we have

bn = (n − 1)!cn−1 = (n − 1)!
∑

ki∈N

k1+...+kn=n−1

n
∏

i=1

1

ki + 1

and the theorem is proved. �

Corollary 2.2. Let µ =
∑+∞

n=1
1
nδn be the base of the logarithmic NEF, and let

Pµ1 be the NEF generated by µ1 = φ∗µ where φ(x) = −x+ 2.
Then Pµ1 is invertible and its inverse is Pµ̃1 , with µ̃1 defined by (2.10) and (2.11).

For a weaker notation, we denote the inverse logarithmic series distribution,
Pµ̃1 , by I.L.S.D.

3. Asymptotic behaviour of the variance function

We recall some notation:

µ =
∑+∞

n=1
1
nδn,

µ1 = φ∗µ where φ(x) = −x+ 2, i.e. µ1 =
∑+∞

n=1
1
nδ−n+2,

µ̃1 defined in Corollary 2.1 is the inverse measure of µ1.

The following two theorems describe the asymptotic behaviour of the variance
functions Vµ and Vµ̃1 .

Theorem 3.1. The following results hold:

(a) Mµ = (1,+∞);
(b) Vµ(m) = m2(h(m)− 1) where the function h(m) is such that:

(b1) h(m) = log(m logm) + log logm
logm + o

(

log logm
logm

)

as m → +∞,

(b2) h(m)− 1 = m − 1 + o(m − 1) as m → 1+.

Proof: (a) Let µ =
∑+∞

n=1
1
nδn; we have

kµ(θ) = log
[

− log(1− eθ)
]

, Θµ = (−∞, 0), m(θ) = k′µ(θ) =

= −
eθ

(1− eθ) log(1− eθ)
, ∀ θ ∈ Θµ.

Mµ is the image of k
′
µ(θ), thus

Mµ = (1,+∞).
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(b) From

k′′µ(θ) = −eθ log(1− eθ) + eθ

(1− eθ)2 log2(1− eθ)

it follows that
k′′µ(θ) = (k

′

µ(θ))
2(ϕ(θ) − 1)

where ϕ(θ) = −(log(1− eθ))/θ.
Let θ(m) be the inverse function of k′(θ) = m(θ); we have

V (m) = k′′(θ(m)) = m2(ϕ(θ(m)) − 1).

Denoting ϕ(θ(m)) = h(m), it follows V (m) = m2(h(m)− 1), that is (b).

(b1) This point can be proved equivalently by showing that

lim
m→+∞

h(m)− log(m logm)
log logm
logm

= 1

that is

lim
m→+∞

eh(m)−log(m logm)−1
log logm
logm

= 1

or equivalently
eh(m)

m logm
− 1 ∼

log logm

logm
as m → +∞.

Since m → +∞ ⇔ θ → 0, changing variable, we find that

eh(m)

m logm
− 1 = (1− eθ)−1/ e

θ

[

−
(1− eθ) log(1− eθ)

eθ

]

1

log
[

− eθ

(1−eθ) log(1−eθ)

] − 1

=

[

log(1− eθ)
] (

1− (1− eθ)1−1/ e
θ
)

− θ + log
[

− log(1− eθ)
]

eθ
{

θ − log(1− eθ)− log
[

− log(1 − eθ)
]} ;

furthermore it is easy to show that

lim
θ→0

[

log(1− eθ)
] (

1− (1− eθ)1−1/ e
θ
)

= 0.

Hence

eh(m)

m logm
− 1 ∼

− log
[

− log(1− eθ)
]

log(1− eθ)
as m → +∞ (θ → 0).
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We have also that

− log
[

− log(1− eθ)
]

log(1− eθ)
∼
log logm

logm
as m → +∞.

Hence, as m → +∞
eh(m)

m logm
− 1 ∼

log logm

logm
.

(b2) First, we observe that m → 1⇔ θ → −∞.
Then, we treat separately m − 1 and h(m) − 1 and express them in terms of θ.
We find respectively that, when θ → −∞

m − 1 = −
eθ

(1− eθ) log(1− eθ)
− 1 =

− eθ −(1− eθ) log(1− eθ)

(1− eθ) log(1− eθ)

∼
− eθ +eθ −12 e

2θ

− eθ
=
1

2
eθ

and

h(m)− 1 =
− log(1− eθ)− eθ

eθ
∼
1

2
eθ .

Hence we have proved that

lim
m→1

h(m)− 1

m − 1
= 1,

that is the thesis. �

Now we state and prove the theorem describing the asymptotic behaviour of
the variance function of µ̃1, where µ̃1 is the inverse measure of µ1 = φ∗µ.

Theorem 3.2. The following results hold:

(i) Mµ̃1 = (1,+∞),

(ii) as m → +∞, Vµ̃1(m) ∼ αm3, where α = Vµ(2).

Proof: Recall that Vµ(m) is the variance function of the NEF generated by

µ =
∑+∞

n=1
1
nδn and that Mµ is its domain. From (a) of Theorem 3.1 we know

that Mµ = (1,+∞), then M+
µ = (1,+∞). If φ(x) = −x+ 2 and µ1 = φ∗µ, from

Theorem 1.1 we derive that Mµ1 = (−∞, 1) and Vµ1(m) = V (−m+ 2) implying

M+
µ1 =Mµ1 ∩ (0,+∞) = (0, 1).
From Theorem 1.2 we conclude that

(i) Mµ̃1 = (1,+∞) and

(ii) Vµ̃1(m) = m3Vµ1

(

1
m

)

= m3Vµ
(

− 1m + 2
)

from which it follows that

lim
m→+∞

Vµ̃1(m)

m3
= Vµ(2) > 0

and the theorem is proved. �
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