On locally *r*-incomparable families of infinite-dimensional Cantor manifolds

VITALIJ A. CHATYRKO

Abstract. The notion of locally *r*-incomparable families of compacta was introduced by K. Borsuk [KB]. In this paper we shall construct uncountable locally *r*-incomparable families of different types of finite-dimensional Cantor manifolds.

Keywords: Cantor manifolds, countable-dimensional, weakly infinite-dimensional, strongly infinite-dimensional Classification: 54F45

0. Introduction

Throughout this note we shall consider only separable metrizable spaces. By dimension we mean the covering dimension dim.

A subset L of a space X is a partition in X if there exist two non-empty open in X subsets U and V such that $L = X \setminus (U \cup V)$. We say in this case that X is separated by L.

An infinite-dimensional Cantor manifold is an infinite-dimensional compact space which cannot be separated by any finite-dimensional subspace.

There exist different types of infinite-dimensional Cantor manifolds. In particular, there exist countable-dimensional Cantor manifolds [Ch1], [O], weakly infinitedimensional Cantor manifolds which cannot be separated by any countable-dimensional subspace (as recently showed by E. Pol [EP]) and even strongly infinitedimensional Cantor manifolds which cannot be separated by any weakly infinitedimensional subspace.

The last type of infinite-dimensional Cantor manifolds can be obtained as follows. It is well known that every strongly infinite-dimensional compact space contains an hereditarily strongly infinite-dimensional closed subset (see for example [R-S-W]). Every hereditarily infinite-dimensional compact space contains an infinite-dimensional Cantor manifold ([T]). Thus every strongly infinite-dimensional compact space contains hereditarily strongly infinite-dimensional Cantor manifold. Note that every hereditarily strongly infinite-dimensional Cantor manifold cannot be separated by any weakly infinite-dimensional subspace.

We shall call two compact spaces A, B injectively different if A does not embed into B and vice versa. A family A of compacta is injectively different if every two different elements $A, B \in A$ are injectively different.

E. Pol proved the following

Theorem 0.1 ([EP]). There exists an injectively different family $\mathcal{A}(|\mathcal{A}| = 2^{\aleph_0})$ of hereditarily infinite-dimensional Cantor manifolds.

Remark 0.1. The proof of Theorem 0.1 is based on the existence of hereditarily infinite-dimensional compact spaces. The existence of weakly infinite-dimensional hereditarily infinite-dimensional compact spaces is an open question ([RP1]). If we use in the proof of Theorem 0.1 an hereditarily strongly infinite-dimensional compactum (which exists) we shall obtain that the family \mathcal{A} consists of hereditarily strongly infinite-dimensional Cantor manifolds.

Two compact spaces A, B are locally *r*-incomparable if any non-empty open subset of A does not embed into B and vice versa. A family A of compacta is locally *r*-incomparable if every two different elements $A, B \in A$ are locally *r*-incomparable.

This notion was introduced by K. Borsuk. It is well known that for every n = 1, 2, ... there exists an uncountable locally *r*-incomparable family of *n*-dimensional *AR*-compacta (see for example [KB]). Recently this fact was used in order to define a fractional dimension function satisfying Menger's axioms in the class of finite-dimensional locally compact spaces ([T-H]).

It is clear that every locally r-incomparable family of compacta is injectively different.

In this paper we shall construct uncountable locally *r*-incomparable families of named above types of infinite-dimensional Cantor manifolds.

1. Terminology and notation

The necessary information about notions and notations we use can be found in [A-P] and [E].

A space X is countable-dimensional (shortly c.d.) if X can be represented as a countable union of 0-dimensional subspaces.

A Cantor trInd-manifold of class α , $\alpha < \omega_1$, is a compact space which cannot be separated by any partition L with $trIndL < \alpha$.

It is known that for every $\alpha < \omega_1$ there exists a c.d. Cantor *trInd*-manifold of class α ([Ch1], see also part 2).

A space X is A-weakly infinite-dimensional (shortly A-w.i.d.) if for each infinite sequence $(A_1, B_1), (A_2, B_2), \ldots$ of pairs of disjoint closed subsets of X there exist partitions L_i between A_i and B_i in X such that $\bigcap_{i=1}^{\infty} L_i = \emptyset$.

A space X is hereditarily A-w.i.d. if every subspace of X is A-w.i.d.

A space X is A-strongly infinite-dimensional (shortly A-s.i.d.) if it is not A-w.i.d.

Remind that each c.d. space is A-w.i.d. Moreover, a space which is the union of countably many c.d. (A-w.i.d.) subspaces is c.d. (A-w.i.d.).

If a space X is compact then one say that X is weakly infinite-dimensional (shortly w.i.d.) or strongly infinite-dimensional (shortly s.i.d.) respectively.

It is known that there exists a w.i.d. compact space P which cannot be separated by any hereditarily A-w.i.d. subspace ([EP]). Note that P cannot be separated by any countable-dimensional subspace. In particular P is not c.d. Remind that the first example of a w.i.d. compactum which is not c.d. was given by R. Pol [RP2].

A compact space X is hereditarily infinite-dimensional, shortly h.i.d. (hereditarily strongly infinite-dimensional, shortly h.s.i.d.), if each nonempty closed subset of X is either 0-dimensional or infinite-dimensional (strongly infinite-dimensional).

The first example of h.i.d. compactum was given by D. Henderson [H1].

In [H2] D. Henderson has constructed a c.d. AR-compactum H^{α} with $trIndH^{\alpha} = \alpha$ for every $\alpha < \omega_1$. Remind this construction.

Let $H^I = I = [0, 1], p_1 = \{0\}$. Assume that for every $\beta < \alpha$ the compacta H^{β} and the points $p_{\beta} \in H^{\beta}$ have already been defined. If $\alpha = \beta + 1$, then we set $H^{\beta+1} = H^{\beta} \times I$ and $p_{\beta+1} = (p_{\beta}, 0)$. If α is a limit ordinal, then K_{β} is the union of the H^{β} and a half-open arc A_{β} such that $A_{\beta} \cap H^{\beta} = \{p_{\beta}\} = \{$ endpoint of the arc $A_{\beta}\}, \beta < \alpha$. Let us define H^{α} as the one-point compactification of the free sum $\bigoplus_{\beta < \alpha} K_{\beta}$ and let p_{α} be the compactification point.

It is well known that every ordinal α may be represented in the form $\alpha = p(\alpha) + n(\alpha)$, where $p(\alpha)$ is a limit ordinal and $n(\alpha) < \omega$.

Note that the compactum H^{α} , where $n(\alpha) \ge 1, \alpha < \omega_1$, cannot be separated by a point.

A dimension function d is monotone if for any space X and any subset $A \subset X$ closed in X, $dA \leq dX$.

2. Variation of Fedorchuk's construction

Let R be the real line, $Q \subset R$ be the rational numbers, $Irr \subset R$ be the irrational numbers and I = [0, 1]. The notation $Z \simeq Y$ will mean that spaces Z and Y are homeomorphic.

We shall follow [Ch2] as a variation of [F1], [F2]. Remind some definitions.

A continuous mapping $f: X \to Y$ is called fully closed if for any point $y \in Y$ and any finite covering $\{U_i : i = 1, 2, ..., s\}$ of $f^{-1}y$ by sets open in X, the set $\{y\} \cup (\bigcup_{i=1}^s f^{\#}U_i)$ is open in Y. Here $f^{\#}U = Y \setminus f(X \setminus U)$.

A continuous mapping $f : X \to Y$ is called ring-like if for any point $x \in X$ and arbitrary neighbourhoods Ox and Ofx, the set $f^{\#}Ox$ contains a partition between the point fx and the set $Y \setminus Ofx$ in the space Y.

A continuous mapping $f : X \to Y$ is called monotone if for any point $y \in Y$ the set $f^{-1}y$ is connected.

A continuous mapping $f : X \to Y$ is called irreducible if for any non-empty open subset $O \subset X$ we have $f^{\#}O \neq \emptyset$.

Consider a continuum Y with a countable everywhere dense subset

 $P = \{a_1, a_2, a_3, \ldots\} \subset Y$ and fix an embedding $Y \subset I^{\infty}$. Define a mapping $f : (0, 1] \to I^{\infty}$ as follows. Namely

 $f|_{[1/(i+1),1/i]}: [1/(i+1),1/i] \to I^{\infty}$ is a path between

the points a_{i+1} and a_i in 1/i-neighborhood of Y, i = 1, 2, ...

The mapping f satisfies the following conditions:

(a) for every open neighborhood O of the continuum Y in I^{∞} there exists a natural number n such that $f(0, 1/n] \subset O$;

(b) for every non-empty open subset $U \subset Y$ and every natural number n there exists a number $m \ge n$ such that $f(1/m) \in U$.

2.a Particular case

Define a mapping $g: [-1,1] \setminus \{0\} \to I^{\infty}$ by g(x) = f(|x|) and mappings

$$g_t: [-1+t, 1+t] \setminus \{t\} \to I^{\infty}$$
 by $g_t(x) = g(x-t)$, where $t \in R$.

Consider the disjoint union $B = \bigcup \{Y_t : t \in R\}$, where Y_t is a point, if $t \in R \setminus Q$, and $Y_t \simeq Y$ if $t \in Q$.

Let $p_t: Y \to Y_t$ be the homeomorphism above, where $t \in Q$.

Define the mapping $\pi: B \to R$ as follows, $\pi(y) = t$, if $y \in Y_t$.

Let $\{V_n\}_{n=1}^{\infty}$ be a base in R, and $\{U_k\}_{k=1}^{\infty}$ be a base in I^{∞} .

The topology τ on the set B we define as follows.

We take all sets $\pi^{-1}V_n$, n = 1, 2, ..., and $O(U_k, t, V_n) = p_t(U_k \cap Y) \cup \pi^{-1}(g_t^{-1}U_k \cap V_n)$, where $t \in Q \cap V_n$ and m, n = 1, 2, ..., as the basis sets of the topology on B.

Note that in the case the mapping π is fully closed, ring-like, irreducible and monotone.

Denote the subspace $\pi^{-1}[0,1]$ of B via F(Y). Some properties of F(Y).

(a) FY is a continuum which is the disjoint union of continua $Y_t, t \in [0, 1]$.

(b) $F(Y) \setminus \bigcup \{Y_t : t \in Q\} \simeq Irr \cap I.$

(c) every non-empty open subset of F(Y) contains a copy of Y.

(d) every subcontinuum of F(Y) either embeds in Y or is equal to $\pi^{-1}[a, b]$, where $0 \le a < b \le 1$.

(e) F(Y) is c.d. (w.i.d., h.s.i.d.) if Y is c.d. (w.i.d., h.s.i.d.).

Example of c.d. Cantor trInd-manifold of class $(\alpha + 1), \alpha < \omega_1$.

Consider the path-connected compactum $Z = F(H^{\alpha}) \times I/F(H^{\alpha}) \times \{0\}.$

Denote the compactum Z^2 via $A(H^{\alpha})$. It is clear that $A(H^{\alpha})$ is c.d. and every non-empty open subset of Z contains $H^{\alpha+1}$. One can prove (see [Ch1]) that for every partition L in $A(H^{\alpha})$ we have $trIndL \ge \alpha+1$. Hence the continuum $A(H^{\alpha})$ is a Cantor trInd-manifold of class $(\alpha + 1)$.

2.b General case

Consider a continuum X and a countable subset L of X. Fix a point $x \in L$ and a sequence $\{L_i^x\}_{i=1}^{\infty}$ of partitions in X such that

(a) $L_i^x = X \setminus (U_i^x \cup V_i^x)$, where U_i^x , V_i^x are disjoint non-empty open subsets of the continuum X and $x \in U_i^x$ for every i;

(b) $U_i^x \cup L_i^x \subset U_{i-1}^x, i = 2, 3, \dots;$

(c) $\{U_i^x\}_{i=1}^\infty$ is a base in the point x.

Note that all partitions L_i^x , i = 1, 2, ... are non-empty. Define a mapping $h_x : V_1^x \cup \bigcup_{i=1}^{\infty} L_i^x \to (0, 1]$ as follows

(a) $h_x(X \setminus U_1^x) = 1;$

(b)
$$h_x(L_i^x) = 1/i, i = 2, 3, \dots$$

By $q_x : X \setminus \{x\} \to (0,1]$ we denote an extension of h_x on $X \setminus \{x\}$ such that $q_x((U_i^x \cup L_i^x) \setminus U_{i+1}^x) \subset [1/(i+1), 1/i], i = 1, 2, \dots$

Put $g_x = f \circ q_x$. The mapping g_x satisfies the following conditions:

(a) for every open neighborhood O of the continuum Y in I^{∞} there exists a natural number n such that $g_x U_n^x \subset O$;

(b) for every non-empty open subset $U \subset Y$ and every natural number n there exists a number $m \ge n$ such that $g_x(L_m^x) \subset U$.

Consider the disjoint union $B(X, Y, L) = \bigcup \{Y_x : x \in X\}$, where Y_x is a point if $x \in X \setminus L$ and $Y_x \simeq Y$ if $x \in L$.

Let $p_x: Y \to Y_x$ be the homeomorphism above, where $x \in L$.

Define the mapping $\pi : B(X, Y, L) \to X$ by $\pi(y) = x$ if $y \in Y_x$.

Let $\{V_n\}_{n=1}^{\infty}$ be a base in X, and $\{U_k\}_{k=1}^{\infty}$ be a base in I^{∞} .

We define the topology τ on the set B(X, Y, L) as follows.

We take all sets $\pi^{-1}V_n$, n = 1, 2, ..., and $O(U_k, x, V_n) = p_x(U_k \cap Y) \cup \pi^{-1}(g_x^{-1}U_k \cap V_n)$, where $x \in L \cap V_n$ and m, n = 1, 2, ..., as the basis sets of the topology on B(X, Y, L).

Note that in this case the mapping π is fully closed, ring-like, irreducible and monotone.

Note some properties of B(X, Y, L).

Proposition 2.1. (a) B(X, Y, L) is a continuum which is the disjoint union of continua $Y_x, x \in X$.

(b) $B(X, Y, L) \setminus \bigcup \{Y_x : x \in L\} \simeq X \setminus L.$

(c) Every non-empty open subset of B(X, Y, L) contains a copy of Y if L is an everywhere dense subset of X.

(d) Every subcontinuum C of B(X, Y, L) either embeds in Y or is equal to $\pi^{-1}\pi C = B(\pi C, Y, L \cap \pi C)$. Moreover in the last case either C lies in $X \setminus L$ if $L \cap \pi C = \emptyset$ or C contains a copy of Y if $L \cap \pi C \neq \emptyset$.

(e) B(X, Y, L) is c.d. (w.i.d., h.s.i.d.) if X, Y are c.d. (w.i.d., h.s.i.d.).

(f) Let C be a partition in B(X, Y, L). Then there exists a partition C_1 in X such that for each subspace Z of C_1 the subspace $Z \setminus L$ embeds into C. In particular, if X is an infinite-dimensional Cantor manifold then B(X, Y, L) is the same.

PROOF: (a)–(d) follow from the construction and the properties of π .

(e) We shall prove only that the continuum B(X,Y,L) is w.i.d. if the continua X,Y are w.i.d. Consider a countable family $\{(A_j^i, B_j^i) : i = 0, 1, \ldots; j = 1, 2, \ldots\}$ of pairs of disjoint closed subsets of B(X,Y,L). Let $L = \{l_1, l_2, \ldots\}$. For every $i = 1, 2, \ldots$ there exist partitions L_j^i between A_j^i and B_j^i in B(X,Y,L) such that $(\bigcap_{j=1}^{\infty} L_j^i) \cap Y_{l_i} = \emptyset$. Denote the compactum $\bigcap_{i=1}^{\infty} (\bigcap_{j=1}^{\infty} L_j^i)$ via A. Note that $A \subset B(X,Y,L) \setminus \bigcup \{Y_x : t \in L\} \simeq X \setminus L$ and hence A is w.i.d. There exist partitions L_j^0 between A_j^0 and B_j^0 in B(X,Y,L) such that $(\bigcap_{j=1}^{\infty} L_j^0) \cap A = \bigcap_{i=0}^{\infty} (\bigcap_{j=1}^{\infty} L_j^i) = \emptyset$. Hence the compactum B(X,Y,L) is w.i.d.

(f) Let $C = B(X, Y, L) \setminus (U \cup V)$ where U, V are disjoint non-empty open subsets of B(X, Y, L). Note that the subsets $\pi^{\#}U, \pi^{\#}V$ of X are disjoint non-empty open and the subset $C_1 = X \setminus (\pi^{\#}U \cup \pi^{\#}V)$ is a partition in X. It is clear that for each subspace Z of C_1 the subspace $Z \setminus L$ embeds into C. Suppose that X is an infinite-dimensional Cantor manifold and the partition C is finite-dimensional. Therefore the subspace $C_1 \setminus L$ is finite-dimensional and hence the partition C_1 is finite-dimensional too. It is a contradiction.

Proposition 2.2. Let *L* be an everywhere dense subset of *X* and Y_1, Y_2 be injectively different continua, which do not embed into *X*. Then continua $B(X, Y_1, L)$, $B(X, Y_2, L)$ are locally *r*-incomparable.

PROOF: Let U be an open non-empty subset of $B(X, Y_1, L)$. Suppose that $g: U \to B(X, Y_2, L)$ is an embedding. By Proposition 2.1 (c) U contains a copy of Y_1 . By Proposition 2.1 (d) the image $g(Y_1)$ of the copy of Y_1 either embeds into Y_2 (it is a contradiction) or is equal to $\pi^{-1}\pi g(Y_1)$. In the last case $g(Y_1)$ either lies in $X \setminus L \subset X$ or contains a copy of Y_2 . It is a contradiction too.

3. On E. Pol's proposition

The following statement in fact was proved in [EP].

Proposition 3.1. Let A, B be two c.d. continua which cannot be separated by a point and which are injectively different. Then there exists an injectively different family $\{L_a : a \in \{0,1\}^\infty\}$ of c.d continua such that for every $a \in \{0,1\}^\infty$, L_a contains copies of A and B.

We repeat here the description from [EP].

Choose two pairs of different points $a_1, a_2 \in A$ and $b_1, b_2 \in B$. Let X_1, X_2, \ldots be a sequence of spaces such that X_i is a copy of A or B and $x_j^i = a_j$ if $X_i = A$ and $x_j^i = b_j$ if $X_i = B$, for j = 1, 2. Consider the equivalence relation E on the free sum $X = \bigoplus_{i=1}^{\infty} X_i$ such that x E y iff x = y or $x = x_2^i$ and $y = x_1^{i+1}$ for some $i \in N$.

Let Y = X/E be the quotient space and $Z = Z(X_1, X_2, ...)$ be the one-point compactification of Y. Then Z is a c.d. continuum. Let K be the class of all spaces $Z(X_1, X_2, ...)$ obtained in this way.

It was shown in [EP] that K contains an injectively different uncountable family $\{L_a : a \in \{0,1\}^{\infty}\}$. Namely, for $a = \{\alpha_k\}_{k=1}^{\infty} \in \{0,1\}^{\infty}$, $L_a = Z(X_1^a, X_2^a, \ldots)$, where $X_1^a = A, X_2^a = B$ and for $k = 1, 2, \ldots$:

if $a_k = 0$ then X^a_{5k-3+l} is A, for l = 1, 2; and it is B, for l = 3, 4, 5;

if $a_k = 1$ then X^a_{5k-3+l} is A, for l = 1, 2, 3; and it is B, for l = 4, 5;

4. Two c.d. injectively different infinite-dimensional continua which cannot be separated by a point

Let γ be an infinite ordinal with $n(\gamma) \geq 1$. Remind that the compactum $A(H^{\gamma})$ is a c.d. Cantor trInd-manifold of class $(\gamma + 1)$. Put $\beta = trIndA(H^{\gamma}) + 1 < \omega_1$. Note that $n(\beta) \geq 1$. Continua $A(H^{\gamma})$ and H^{β} cannot be separated by a point. Since $trIndH^{\beta} = \beta > trIndA(H^{\gamma})$, H^{β} does not embed into $A(H^{\gamma})$.

We shall prove that $A(H^{\gamma})$ does not embed into H^{β} . Remind that H^{β} is the union of countably many finite-dimensional compacta. Assume that $A(H^{\gamma})$ embeds into H^{β} . Hence $A(H^{\gamma})$ is the union of countably many finite-dimensional compacta at least one of which contains a non-empty open subset of $A(H^{\gamma})$. But every non-empty open subset of $A(H^{\gamma})$ contains a copy of H^{γ} with $trIndH^{\gamma} = \gamma \geq \omega$. It is a contradiction. Hence $A(H^{\gamma})$ does not embed into H^{β} .

Note that both compacts $A(H^{\gamma})$ and H^{β} contain H^{γ} . Now with help of Proposition 3.1 the following statement is evident.

Proposition 4.1. For every ordinal $\gamma < \omega_1$ there exists an injectively different family $\{L_a : a \in \{0,1\}^{\infty}\}$ of c.d continua such that for every $a \in \{0,1\}^{\infty}$, L_a contains a copy of H^{γ} .

5. Main results

Here we shall construct uncountable locally *r*-incomparable families of named in the introduction types of infinite-dimensional Cantor manifolds.

First we need the following evident (see the separation theorem for dimension 0 ([E, p. 11])

Lemma 5.1. Let A be a 0-dimensional subset of a compactum Z. Assume that $trIndQ < \alpha$ for every compactum $Q \subset Z \setminus A$. Then $trIndZ \leq \alpha$.

In particular, if $trIndZ \ge \beta + 1$, then there exists a compactum $Q \subset Z \setminus A$ such that $trIndQ = \beta$.

Theorem 5.1. For every $\alpha < \omega_1$ there exists a locally *r*-incomparable family \mathcal{A} $(|\mathcal{A}| = 2^{\aleph_0})$ of *c.d.* Cantor *trInd*-manifolds of class α .

PROOF: Fix an ordinal $\alpha < \omega_1$. Denote $A(H^{\alpha})$ via X. Note that X is a c.d. Cantor trInd-manifold of class $(\alpha + 1)$. Let $\gamma = trIndX + 1$. By Proposition 4.1 there exists an injectively different family $\{L_a : a \in \{0,1\}^{\infty}\}$ of c.d continua such that for every $a \in \{0,1\}^{\infty}$, L_a contains a copy of H^{γ} . Remind that $trIndH^{\gamma} = \gamma$ ([H2]) and the dimension trInd is monotone. Hence for every $a \in \{0,1\}^{\infty}$, L_a does not embed into X.

Let L be an everywhere dense countable subset of X.

By Propositions 2.1 (e), (f), 2.2 and Lemma 5.1 the family $\{B(X, L_a, L) : a \in \{0, 1\}^{\infty}\}$ is locally *r*-incomparable and it consists of c.d. Cantor *trInd*-manifolds of class α .

Now we need the following evident

Lemma 5.2. Let X be a A-s.i.d. space and Y be a 0-dimensional subspace of X. Then the subspace $X \setminus Y$ is A-s.i.d.

Theorem 5.2. There exists a locally *r*-incomparable family \mathcal{A} ($|\mathcal{A}| = 2^{\aleph_0}$) of w.i.d. Cantor manifolds which cannot be separated by any hereditarily A-w.i.d. subspace.

PROOF: Denote the w.i.d. compactum P from part 1 via X. Let $dim_w X = \alpha < \omega_1$, where dim_w is Borst's transfinite extension of the covering dimension dim ([PB]). Put $\gamma = \alpha + 1$. By Proposition 4.1 there exists an injectively different family $\{L_a : a \in \{0,1\}^\infty\}$ of c.d continua such that for every $a \in \{0,1\}^\infty$, L_a contains a copy of H^{γ} . Remind that $dim_w H^{\gamma} = \gamma$ ([PB]) and the dimension dim_w is monotone. Hence for every $a \in \{0,1\}^\infty$, L_a does not embed into X. Let L be an everywhere dense countable subset of X. By Propositions 2.1 (e), (f), 2.2 and Lemma 5.2, the family $\{B(X, L_a, L) : a \in \{0,1\}^\infty\}$ is locally r-incomparable and it consists of w.i.d. Cantor manifolds which cannot be separated by any hereditarily A-w.i.d. subspace.

Theorem 5.3. There exists a locally r-incomparable family \mathcal{A} ($|\mathcal{A}| = 2^{\aleph_0}$) of h.s.i.d. Cantor manifolds.

PROOF: By Theorem 0.1 (see also Remark 0.1) there exists an injectively different family $\{L_a : a \in \{0,1\}^\infty\}$ of h.s.i.d. Cantor manifolds. Put $X = L_{(0,0,\ldots)}$ and $M_{(b_1,b_2,\ldots)} = L_{(1,b_1,b_2,\ldots)}$ for every $(b_1,b_2,\ldots) \in \{0,1\}^\infty$. Note that for every $b \in \{0,1\}^\infty$, M_b does not embed into X. Let L be an everywhere dense countable subset of X. By Propositions 2.1 (e), (f) and 2.2 the family $\{B(X, M_b, L) : b \in \{0,1\}^\infty\}$ is locally r-incomparable and it consists of h.s.i.d. Cantor manifolds.

172

On locally r-incomparable families of infinite-dimensional Cantor manifolds

References

- [A-P] Aleksandrov P.S., Pasynkov B.A., Introduction to Dimension Theory (in Russian), Moscow, 1973.
- [KB] Borsuk K., Theory of Retracts, PWN, Warszawa, 1969.
- [PB] Borst P., Classification of weakly infinite-dimensional spaces, Part I: A transfinite extension of the covering dimension, Fund.Math. 130 (1988), 1–25.
- [Ch1] Chatyrko V.A., Analogues of Cantor manifolds for transfinite dimensions (in Russian), Mat. Zametki 42 (1987), 115–119.
- [Ch2] Chatyrko V.A., On hereditarily indecomposable non-metrizable continua (in Russian), Mat. Zametki 46 (1989), 122–125.
- [E] Engelking R., Theory of Dimensions Finite and Infinite, Sigma Series in Pure Math. vol. 10, Heldermann Verlag, 1995.
- [F1] Fedorchuk V.V., Bicompacta with non-coinciding dimensionalities (in Russian), DAN SSSR 182 (1968), 275–277.
- [F2] Fedorchuk V.V., Mappings that do not reduce dimension (in Russian), DAN SSSR 185 (1969), 54–57.
- [H1] Henderson D.W., An infinite-dimensional compactum with no positive-dimensional compact subsets – a simpler construction, Amer. J. Math. 89 ((1967), 105–123.
- [H2] Henderson D.W., A lower bound for transfinite dimension, Fund. Math. 64 (1968), 167–173.
- [O] Olszewski W., Cantor manifolds in the theory of transfinite dimension, Fund. Math. 145 (1994), 39–64.
- [EP] Pol E., On infinite-dimensional Cantor manifolds, Topology Appl. 71 (1996), 265– 276.
- [RP1] Pol R., Questions in Dimension Theory, Open Problems in Topology, North-Holland, 1990.
- [RP2] Pol R., A weakly infinite-dimensional compactum which is not countable-dimensional, Proc. Amer. Math. Soc. 82 (1981), 634–636.
- [R-S-W] Rubin L.R., Schori R.M., Walsh J.J., New dimension-theory techniques for constructing infinite-dimensional examples Gen. Topology Appl. 10 (1979), 93–102.
- [T] Tumarkin L.A., On Cantorian manifolds of an infinite number of dimensions (in Russian), DAN SSSR 115 (1957), 244–246.
- [T-H] Tsuda K., Hata M., Fractional dimension function, Topology Proc. 18 (1993), 323– 328.

DEPARTMENT OF MATHEMATICS, LINKÖPING UNIVERSITY, 581 83 LINKÖPING, SWEDEN *E-mail*: vitja@mai.liu.se

(Received September 16, 1997)