Comment.Math.Univ.Carolin. 40,1 (1999)165-173

On locally r-incomparable families
of infinite-dimensional Cantor manifolds

ViTaLl) A. CHATYRKO

Abstract. The notion of locally r-incomparable families of compacta was introduced by
K. Borsuk [KB]. In this paper we shall construct uncountable locally r-incomparable
families of different types of finite-dimensional Cantor manifolds.
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0. Introduction

Throughout this note we shall consider only separable metrizable spaces. By
dimension we mean the covering dimension dim.

A subset L of a space X is a partition in X if there exist two non-empty open
in X subsets U and V such that L = X \ (UUV'). We say in this case that X is
separated by L.

An infinite-dimensional Cantor manifold is an infinite-dimensional compact
space which cannot be separated by any finite-dimensional subspace.

There exist different types of infinite-dimensional Cantor manifolds. In particu-
lar, there exist countable-dimensional Cantor manifolds [Ch1], [O], weakly infinite-
dimensional Cantor manifolds which cannot be separated by any countable-dimen-
sional subspace (as recently showed by E. Pol [EP]) and even strongly infinite-
dimensional Cantor manifolds which cannot be separated by any weakly infinite-
dimensional subspace.

The last type of infinite-dimensional Cantor manifolds can be obtained as fol-
lows. It is well known that every strongly infinite-dimensional compact space
contains an hereditarily strongly infinite-dimensional closed subset (see for exam-
ple [R-S-W]). Every hereditarily infinite-dimensional compact space contains an
infinite-dimensional Cantor manifold ([T]). Thus every strongly infinite-dimen-
sional compact space contains hereditarily strongly infinite-dimensional Cantor
manifold. Note that every hereditarily strongly infinite-dimensional Cantor man-
ifold cannot be separated by any weakly infinite-dimensional subspace.

We shall call two compact spaces A, B injectively different if A does not embed
into B and vice versa. A family A of compacta is injectively different if every two
different elements A, B € A are injectively different.

E. Pol proved the following
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Theorem 0.1 ([EP]). There exists an injectively different family A (|.A] = 280)
of hereditarily infinite-dimensional Cantor manifolds.

Remark 0.1. The proof of Theorem 0.1 is based on the existence of hereditarily
infinite-dimensional compact spaces. The existence of weakly infinite-dimensional
hereditarily infinite-dimensional compact spaces is an open question ([RP1]). If
we use in the proof of Theorem 0.1 an hereditarily strongly infinite-dimensional
compactum (which exists) we shall obtain that the family A consists of heredita-
rily strongly infinite-dimensional Cantor manifolds.

Two compact spaces A, B are locally r-incomparable if any non-empty open
subset of A does not embed into B and vice versa. A family A of compacta
is locally r-incomparable if every two different elements A, B € A are locally
r-incomparable.

This notion was introduced by K. Borsuk. It is well known that for every
n = 1,2,... there exists an uncountable locally r-incomparable family of n-
dimensional AR-compacta (see for example [KB]). Recently this fact was used
in order to define a fractional dimension function satisfying Menger’s axioms in
the class of finite-dimensional locally compact spaces ([T-H]).

It is clear that every locally r-incomparable family of compacta is injectively
different.

In this paper we shall construct uncountable locally r-incomparable families of
named above types of infinite-dimensional Cantor manifolds.

1. Terminology and notation

The necessary information about notions and notations we use can be found in
[A-P] and [E].

A space X is countable-dimensional (shortly c.d.) if X can be represented as
a countable union of 0-dimensional subspaces.

A Cantor trInd-manifold of class o, a < w1, is a compact space which cannot
be separated by any partition L with trindL < a.

It is known that for every a < wy there exists a c.d. Cantor trInd-manifold of
class a ([Chl], see also part 2).

A space X is A-weakly infinite-dimensional (shortly A-w.i.d.) if for each infinite
sequence (A1, By), (A2, B2), ... of pairs of disjoint closed subsets of X there exist
partitions L; between A; and B; in X such that ()72, L; = 0.

A space X is hereditarily A-w.i.d. if every subspace of X is A-w.i.d.

A space X is A-strongly infinite-dimensional (shortly A-s.i.d.) if it is not A-
w.i.d.

Remind that each c.d. space is A-w.i.d. Moreover, a space which is the union
of countably many c.d. (A-w.i.d.) subspaces is c.d. (A-w.i.d.).

If a space X is compact then one say that X is weakly infinite-dimensional
(shortly w.i.d.) or strongly infinite-dimensional (shortly s.i.d.) respectively.
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It is known that there exists a w.i.d. compact space P which cannot be sepa-
rated by any hereditarily A-w.i.d. subspace ([EP]). Note that P cannot be sepa-
rated by any countable-dimensional subspace. In particular P is not c.d. Remind
that the first example of a w.i.d. compactum which is not c.d. was given by R. Pol
[RP2].

A compact space X is hereditarily infinite-dimensional, shortly h.i.d. (heredi-
tarily strongly infinite-dimensional, shortly h.s.i.d.), if each nonempty closed
subset of X is either 0-dimensional or infinite-dimensional (strongly infinite-
dimensional).

The first example of h.i.d. compactum was given by D. Henderson [H1].

In [H2] D. Henderson has constructed a c.d. AR-compactum H® with
trindH® = « for every o < wi. Remind this construction.

Let Hl =1 =1[0,1],p; = {0}. Assume that for every 8 < a the compacta H”
and the points pg € HP have already been defined. If o« = 3 + 1, then we set
HP+Y = HP x T and pgy1 = (pg,0). If a is a limit ordinal, then K is the union
of the H? and a half-open arc Ag such that AgN HP = {ps} = {endpoint of the
arc Ag}, B < a. Let us define H® as the one-point compactification of the free
sum P B<a K3 and let po be the compactification point.

It is well known that every ordinal @ may be represented in the form a =
p(a) + n(a), where p(a) is a limit ordinal and n(a) < w.

Note that the compactum H®, where n(a) > 1,a < wj, cannot be separated
by a point.

A dimension function d is monotone if for any space X and any subset A C X
closed in X, dA < dX.

2. Variation of Fedorchuk’s construction

Let R be the real line, @@ C R be the rational numbers, Irr C R be the irrational
numbers and I = [0,1]. The notation Z ~ Y will mean that spaces Z and Y are
homeomorphic.

We shall follow [Ch2] as a variation of [F1], [F2]. Remind some definitions.

A continuous mapping f : X — Y is called fully closed if for any point y € Y’
and any finite covering {U; : i = 1,2,...,s} of f~ly by sets open in X, the set
{y}U (Ui, f7U;) is open in Y. Here f#*U =Y \ f(X \U).

A continuous mapping f : X — Y is called ring-like if for any point x € X
and arbitrary neighbourhoods Oz and Ofz, the set f#Oz contains a partition
between the point fz and the set Y \ Ofx in the space Y.

A continuous mapping f : X — Y is called monotone if for any point y € Y
the set f~1y is connected.

A continuous mapping f : X — Y is called irreducible if for any non-empty
open subset O C X we have f#0 # 0.

Consider a continuum Y with a countable everywhere dense subset

P = {aj,a2,a3,...} C Y and fix an embedding ¥ C I°°. Define a mapping
f:(0,1] — I as follows. Namely
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f |[1/(i+1),1/i]: [1/(i +1),1/i] — I*® is a path between
the points a;41 and a; in 1/i-neighborhood of Y, i =1,2,... .
The mapping f satisfies the following conditions:

(a) for every open neighborhood O of the continuum Y in I there exists a
natural number n such that f(0,1/n] C O;

(b) for every non-empty open subset U C Y and every natural number n there
exists a number m > n such that f(1/m) € U.

2.a Particular case
Define a mapping ¢ : [-1,1]\ {0} — I* by g(z) = f(]  |) and mappings
gt [-1+t, 1+ \{t} = I by gi(x) = g(x —t), where t € R.

Consider the disjoint union B = U{Y; : t € R}, where Y; is a point, if t € R\ Q,
and V; ~ Y ift € Q.
Let p; : Y — Y; be the homeomorphism above, where ¢t € Q.
Define the mapping m : B — R as follows, n(y) = ¢, if y € V.
Let { Va}p2, be a base in R, and { Uy} be a base in 1*°.
The topology 7 on the set B we define as follows.
We take all sets 771 Vp,,n = 1,2,..., and O(Uy, t, Vp) = pt(UkﬂY)Uw_l(gt_lUkﬂ
Vi), where t € QNV, and m,n = 1,2,..., as the basis sets of the topology on B.
Note that in the case the mapping 7 is fully closed, ring-like, irreducible and
monotone.
Denote the subspace 771[0,1] of B via F(Y).
Some properties of F(Y).

(a) FY is a continuum which is the disjoint union of continua Y3, ¢ € [0, 1].
b)) FY)\WY:teQ}~Irrnl.
(c) every non-empty open subset of F'(Y') contains a copy of Y.

)
(d) every subcontinuum of F(Y) either embeds in Y or is equal to 71 [a, b], where
0<a<bdb<1.

(e) F(Y) is c.d. (w.id., hsid.) if YV is cd. (wi.d., hsid.).

Example of c.d. Cantor ¢rInd-manifold of class (a+ 1), < wy.
Consider the path-connected compactum Z = F(H®) x I/F(H®) x {0}.
Denote the compactum Z2 via A(H®). Tt is clear that A(H®) is c.d. and every
non-empty open subset of Z contains H**t1. One can prove (see [Ch1]) that for
every partition L in A(H%) we have trindL > a+1. Hence the continuum A(H%)
is a Cantor trInd-manifold of class (« + 1).
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2.b General case

Consider a continuum X and a countable subset L of X. Fix a point z € L and
a sequence {L¥}2°, of partitions in X such that

(a) LT = X \ (UF U V"), where UF, V;* are disjoint non-empty open subsets of
the continuum X and z € U for every ¢;

(b) USULT CUF i =2,3,...;
(c) {UF}52, is a base in the point .

Note that all partitions L7 ,i = 1,2,... are non-empty.

Define a mapping h; : Vi* U ;2 L¥ — (0, 1] as follows
(a) ha(X\UT) = 15
(b) he(LY) =1/i,i=2,3,... .

By ¢z : X\ {} — (0, 1] we denote an extension of h; on X \ {z} such that
@((UFULH\UL ) C[1/(i+1),1/i],i=1,2,... .
Put g, = f o g¢. The mapping g, satisfies the following conditions:

(a) for every open neighborhood O of the continuum Y in I°° there exists a
natural number n such that g,UY C O;

(b) for every non-empty open subset U C Y and every natural number n there
exists a number m > n such that g, (L%,) C U.

Consider the disjoint union B(X,Y,L) = U{Y; : = € X}, where Y; is a point
ifreX\Land Y, ~Y ifz e L.

Let pg : Y — Y, be the homeomorphism above, where x € L.

Define the mapping 7 : B(X,Y,L) — X by n(y) =z if y € Y.

Let { Vo5, be a base in X, and { Ui }72, be a base in I°°.

We define the topology 7 on the set B(X,Y, L) as follows.
We take all sets 771 Vy,,n = 1,2,..., and O(Uy, z, Vi) = pz(UpNY)Ur (g5 1ULN
Vi), where z € LNV, and m,n = 1,2,..., as the basis sets of the topology on
B(X,Y,L).

Note that in this case the mapping 7 is fully closed, ring-like, irreducible and
monotone.

Note some properties of B(X,Y, L).

Proposition 2.1. (a) B(X,Y, L) is a continuum which is the disjoint union of
continua Yy, x € X.

(b) B(X,Y,L)\U{Yy : 2 € L} ~ X \ L.

(¢) Every non-empty open subset of B(X,Y, L) contains a copy of Y if L is an
everywhere dense subset of X.
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(d) Every subcontinuum C of B(X,Y,L) either embeds in Y or is equal to
7 1nC = B(nC,Y,L N7wC). Moreover in the last case either C lies in X \ L
if LNwC =0 or C contains a copy of Y if LN 7C # 0.

(e) B(X,Y,L) is c.d. (w.id., h.s.id.) if X,Y are c.d. (w.i.d., h.s.id.).

(f) Let C be a partition in B(X,Y, L). Then there exists a partition C1 in X such
that for each subspace Z of C the subspace Z \ L embeds into C. In particular,
if X is an infinite-dimensional Cantor manifold then B(X,Y, L) is the same.
PRrROOF: (a)—(d) follow from the construction and the properties of 7.

(e) We shall prove only that the continuum B(X,Y, L) is w.i.d. if the continua
X,Y are w.i.d. Consider a countable family {(A;-, B;) :1=0,1,...;5=1,2,...}
of pairs of disjoint closed subsets of B(X,Y, L).{ Let L = {l1,12,...}. For every
i1 =1,2,... there exist partitions L;- between A;- and B;- in B(X,Y, L) such that
(N5, L;)ﬂYli = (). Denote the compactum ;2 (724 L;) via A. Note that A C
B(X,Y,L)\U{Y, : t € L} ~ X\ L and hence A is w.i.d. There exist partitions L?
between A? and B? in B(X,Y, L) such that ((;2; L?)ﬂA = Nizo(Nj21 L) = 0.
Hence the compactum B(X,Y, L) is w.i.d.

(f) Let C = B(X,Y, L)\ (UUV) where U,V are disjoint non-empty open subsets
of B(X,Y,L). Note that the subsets 7#U, 7#V of X are disjoint non-empty open
and the subset C; = X \ (77U Un#V) is a partition in X. It is clear that for
each subspace Z of C] the subspace Z \ L embeds into C. Suppose that X is
an infinite-dimensional Cantor manifold and the partition C' is finite-dimensional.
Therefore the subspace C7 \ L is finite-dimensional and hence the partition C7 is
finite-dimensional too. It is a contradiction. (]

Proposition 2.2. Let L be an everywhere dense subset of X and Y7, Ys be injec-
tively different continua, which do not embed into X . Then continua B(X,Y1, L),
B(X,Ys, L) are locally r-incomparable.

PROOF: Let U be an open non-empty subset of B(X,Y1,L). Suppose that g :
U — B(X,Y3,L) is an embedding. By Proposition 2.1 (c¢) U contains a copy of
Y7. By Proposition 2.1 (d) the image g(Y1) of the copy of Y7 either embeds into
Y3 (it is a contradiction) or is equal to 7~ 17g(Y7). In the last case g(Y7) either
lies in X \ L C X or contains a copy of Ya. It is a contradiction too. ]

3. On E. Pol’s proposition

The following statement in fact was proved in [EP].

Proposition 3.1. Let A, B be two c.d. continua which cannot be separated by a
point and which are injectively different. Then there exists an injectively different
family {Lq : a € {0,1}°°} of c.d continua such that for every a € {0,1}°°, L
contains copies of A and B.

We repeat here the description from [EP].
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Choose two pairs of different points a1,a2 € A and by,by € B. Let X1, Xo,...
be a sequence of spaces such that X; is a copy of A or B and :1:2 =a;if X;=A

and :c; =b; it X; = B, for j = 1,2. Consider the equivalence relation £ on the

free sum X = @32, X; such that zEy iff =y or 2 = a:lz and y = x’l"'l for some

1€ N.

Let Y = X/E be the quotient space and Z = Z(X7, X3,...) be the one-point
compactification of Y. Then Z is a c.d. continuum. Let K be the class of all
spaces Z(X1, Xa,...) obtained in this way.

It was shown in [EP] that K contains an injectively different uncountable family
{Lq : a € {0,1}°°}. Namely, for a = {ak}k 1 € {0,1}*°, Ly = Z(X{, X§,...),
where X = A, X§ = B and for k = 1,2,.

if a, = 0 then X5k—3+l is A, for I =1,2; and it is B, for [ = 3,4, 5;

if a, = 1 then ng—3+l is A, for 1 =1,2,3; and it is B, for | = 4, 5;

4. Two c.d. injectively different infinite-dimensional continua which
cannot be separated by a point

Let v be an infinite ordinal with n(y) > 1. Remind that the compactum A(H")
is a c.d. Cantor trInd-manifold of class (y+1). Put 8 = trIndA(H") +1 < wy.
Note that n(8) > 1. Continua A(H?) and HP cannot be separated by a point.
Since trindHP = 3 > trindA(H"), H® does not embed into A(H?).

We shall prove that A(H?7) does not embed into HP.
Remind that H? is the union of countably many finite-dimensional compacta.
Assume that A(H?) embeds into H®. Hence A(H?) is the union of countably
many finite-dimensional compacta at least one of which contains a non-empty
open subset of A(H7). But every non-empty open subset of A(H7) contains a
copy of HY with trindH"Y =~ > w. It is a contradiction. Hence A(H7) does not
embed into HP.

Note that both compacta A(H?) and HP contain H”. Now with help of Propo-
sition 3.1 the following statement is evident.

Proposition 4.1. For every ordinal v < w; there exists an injectively different
family {Lq : a € {0,1}°°} of c.d continua such that for every a € {0,1}*°, Lq
contains a copy of H7.

5. Main results

Here we shall construct uncountable locally r-incomparable families of named in
the introduction types of infinite-dimensional Cantor manifolds.
First we need the following evident (see the separation theorem for dimension

0 ([E, p.11])

Lemma 5.1. Let A be a 0-dimensional subset of a compactum Z. Assume that
trind@ < « for every compactum Q C Z \ A. Then trindZ < .
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In particular, if trIndZ > 3 + 1, then there exists a compactum @ C Z \ A such
that trind@ = (.

Theorem 5.1. For every a < wy there exists a locally r-incomparable family A
(JA| = 2R0) of c.d. Cantor trInd-manifolds of class c.

PrOOF: Fix an ordinal o < wj. Denote A(H?®) via X. Note that X is a c.d.
Cantor trInd-manifold of class (o + 1). Let v = ¢trIndX + 1. By Proposition 4.1
there exists an injectively different family {L, : a € {0,1}°°} of c.d continua such
that for every a € {0,1}°°, L, contains a copy of H”. Remind that trindH" =~
([H2]) and the dimension ¢rInd is monotone. Hence for every a € {0,1}*°, L,
does not embed into X.

Let L be an everywhere dense countable subset of X.

By Propositions 2.1 (e), (f), 2.2 and Lemma 5.1 the family {B(X, Ly, L) : a €
{0,1}°°} is locally r-incomparable and it consists of c.d. Cantor ¢rInd-manifolds
of class a. O

Now we need the following evident

Lemma 5.2. Let X be a A-s.i.d. space and Y be a 0-dimensional subspace of X.
Then the subspace X \'Y is A-s.i.d.

Theorem 5.2. There exists a locally r-incomparable family A (JA| = 280) of
w.i.d. Cantor manifolds which cannot be separated by any hereditarily A-w.i.d.
subspace.

PROOF: Denote the w.i.d. compactum P from part 1 via X. Let dim,X = a <
w1, where dim,, is Borst’s transfinite extension of the covering dimension dim
([PB]). Put v+ = a + 1. By Proposition 4.1 there exists an injectively different
family {L, : a € {0,1}°°} of c.d continua such that for every a € {0,1}°°, L,
contains a copy of HY. Remind that dim,HY = v ([PB]) and the dimension
dim., is monotone. Hence for every a € {0,1}°°, L, does not embed into X. Let
L be an everywhere dense countable subset of X. By Propositions 2.1 (e), (f), 2.2
and Lemma 5.2, the family {B(X, Ly, L) : a € {0,1}°°} is locally r-incomparable
and it comnsists of w.i.d. Cantor manifolds which cannot be separated by any
hereditarily A-w.i.d. subspace. O

Theorem 5.3. There exists a locally r-incomparable family A (|A| = 2%°0) of
h.s.i.d. Cantor manifolds.

PRrROOF: By Theorem 0.1 (see also Remark 0.1) there exists an injectively different
family {Lq : a € {0,1}*°} of h.s.i.d. Cantor manifolds. Put X = Ly ) and
My by,..) = L(1,b1,bs,...) for every (b1, b2,...) € {0,1}°°. Note that for every
b € {0,1}°°, M} does not embed into X. Let L be an everywhere dense countable
subset of X. By Propositions 2.1 (e), (f) and 2.2 the family {B(X,M,,L) : b €
{0,1}°°} is locally r-incomparable and it consists of h.s.i.d. Cantor manifolds.

(]



[RP1]
[RP2]
[R-S-W]
(]

[T-H]

On locally r-incomparable families of infinite-dimensional Cantor manifolds

REFERENCES

Aleksandrov P.S.; Pasynkov B.A., Introduction to Dimension Theory (in Russian),
Moscow, 1973.

Borsuk K., Theory of Retracts, PWN, Warszawa, 1969.

Borst P., Classification of weakly infinite-dimensional spaces, Part I: A transfinite
extension of the covering dimension, Fund.Math. 130 (1988), 1-25.

Chatyrko V.A., Analogues of Cantor manifolds for transfinite dimensions (in Rus-
sian), Mat. Zametki 42 (1987), 115-119.

Chatyrko V.A., On hereditarily indecomposable non-metrizable continua (in Russian),
Mat. Zametki 46 (1989), 122-125.

Engelking R., Theory of Dimensions Finite and Infinite, Sigma Series in Pure Math.
vol. 10, Heldermann Verlag, 1995.

Fedorchuk V.V., Bicompacta with non-coinciding dimensionalities (in Russian), DAN
SSSR 182 (1968), 275-277.

Fedorchuk V.V., Mappings that do not reduce dimension (in Russian), DAN SSSR
185 (1969), 54-57.

Henderson D.W., An infinite-dimensional compactum with no positive-dimensional
compact subsets — a simpler construction, Amer. J. Math. 89 ((1967), 105-123.
Henderson D.W., A lower bound for transfinite dimension, Fund. Math. 64 (1968),
167-173.

Olszewski W., Cantor manifolds in the theory of transfinite dimension, Fund. Math.
145 (1994), 39-64.

Pol E., On infinite-dimensional Cantor manifolds, Topology Appl. 71 (1996), 265—
276.

Pol R., Questions in Dimension Theory, Open Problems in Topology, North-Holland,
1990.

Pol R., A weakly infinite-dimensional compactum which is not countable-dimensional,
Proc. Amer. Math. Soc. 82 (1981), 634-636.

Rubin L.R., Schori R.M., Walsh J.J., New dimension-theory techniques for construct-
ing infinite-dimensional examples Gen. Topology Appl. 10 (1979), 93-102.
Tumarkin L.A., On Cantorian manifolds of an infinite number of dimensions (in
Russian), DAN SSSR 115 (1957), 244-246.

Tsuda K., Hata M., Fractional dimension function, Topology Proc. 18 (1993), 323—
328.

DEPARTMENT OF MATHEMATICS, LINKOPING UNIVERSITY, 581 83 LINKOPING, SWEDEN

E-mail: vitja@mai.liu.se

(Received September 16,1997)

173



