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The local solution of a parabolic-elliptic equation

with a nonlinear Neumann boundary condition

Volker Pluschke, Frank Weber

Abstract. We investigate a parabolic-elliptic problem, where the time derivative is multi-
plied by a coefficient which may vanish on time-dependent spatial subdomains. The lin-
ear equation is supplemented by a nonlinear Neumann boundary condition −∂u/∂νA =
g(·, ·, u) with a locally defined, Lr-bounded function g(t, ·, ξ). We prove the existence
of a local weak solution to the problem by means of the Rothe method. A uniform
a priori estimate for the Rothe approximations in L∞, which is required by the local
assumptions on g, is derived by a technique due to J. Moser.
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Introduction

In this paper we prove the weak solvability of a time-dependent partial dif-
ferential equation with a nonlinear Neumann boundary condition. The evolution
problem which shall be investigated shows the following special features.

(i) The time derivative is multiplied by a coefficient ψ(t, x), (t, x) ∈ [0, T ]×G
which may vanish in certain time-dependent subdomains E(t) of G (cf.
Assumption 1.3). Hence, the differential equation we consider is parabolic-
elliptic.

(ii) Though we show the weak solvability (up to a certain point of time) in a
Sobolev space, any growth restrictions of the nonlinearity, arising in the
boundary condition Bu = g(·, ·, u), are omitted. Instead, the function
g(·, ·, ξ) is assumed to be defined and bounded only on a set { ξ ∈ R :
|ξ| ≤ R } (cf. Assumption 1.6).

We derive our existence result by means of the Rothe method (cf. e.g. [6],
[13]) which is based on a semidiscretization with respect to the time variable,
whereby the given evolution problem is approximated by a sequence of linear
elliptic problems.

In view of (ii), the approximations obtained by solving these “discretized” prob-
lems have to be estimated in L∞. For that purpose, we fall back on a technique
introduced by J. Moser (cf. [8]), where appropriate Lp-estimates uniformly ap-
proach the desired boundedness statement as p −→ ∞. In various papers which
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treat parabolic Dirichlet problems, a method has been developed to derive such
Lp-bounds, which are uniform with respect to both p and the stepsize h of the
discretization (cf. e.g. [10]–[12]). Its principle consists in showing that Lp-norms
of the approximations, p ≥ 2, may be traced back recursively to L2, where ap-
propriate estimates easily can be derived by means of a well-known technique.
Using the Rothe method, nonlinear Neumann problems have also been investi-

gated, for instance, by such authors as J. Kačur, J. Filo, and M. Slodička (cf. e.g.
[2], [7], [15]). However, the nonlinearities arising in these problems were assumed
to satisfy global growth conditions.
For the treatment of the degenerate differential equation, the outlined L∞-

technique is combined with the use of weighted Lebesgue norms. In contrast to
[12] or [17, Section 3.1], where the coefficient of the time derivative may vanish
only at a set of zero measure, these norms do not supply us with information on
the behaviour of the approximations on the “elliptic” subdomains E(t). This fact
complicates our proofs and entails the simple form of the differential operator.
Nonlinear degenerations in sets, depending upon the function searched for,

have been investigated in fixed Lp or Orlicz spaces, for instance, by J. Kačur
(cf. e.g. [7]). However, we consider the case of degeneration domains E(t) which
are not influenced by the solution sought and estimate the Rothe approximations
in L∞.
The present paper generalizes results of [17, Section 3.2], where the Rothe

method was applied to parabolic-elliptic equations in which the coefficient of the
time derivative may vanish in an invariable subdomain E(t) ≡ E .

1. The problem and the assumptions

Let G ⊂ R
N , 2 ≤ N ≤ 5, be a simply connected, bounded domain of the

C∞-class, and IT the time interval [0, T ]. Moreover, we use the abbreviations
QT := IT ×G, ΓT := IT × ∂G.
In the course of this paper, ‖ ·‖p,Ω denotes the norm of Lp(Ω), 1 ≤ p ≤ ∞, and

(·, ·)Ω the duality between Lp(Ω) and Lp′(Ω), where p
′ is the conjugate exponent

of p, i.e., 1/p + 1/p′ = 1. In particular, if Ω = G, we write ‖ · ‖p := ‖ · ‖p,G,

(·, ·) := (·, ·)G. The norm of the Sobolev-Slobodeckĭı space W
µ
p (G), 1 ≤ p ≤ ∞,

µ ≥ 0, shall be denoted by ‖ · ‖µ,p. Moreover, we introduce the functional ‖ · ‖∇,2,
defined as

‖u‖∇,2 :=

{

N
∑

i=1

∥

∥

∥

∥

∂u

∂xi

∥

∥

∥

∥

2

2

}

1

2

on W 12 (G). Let X be a normed linear space. Then Lp(IT , X), C(IT , X), and

C0,1(IT , X) denote the sets of the Lp-integrable, continuous, or Lipschitz contin-
uous mappings ϕ : IT −→ X , respectively. Moreover, BR[X ] is the closed ball
{x ∈ X : ‖x‖X ≤ R}.
In the course of this paper, the letter c is often used to denote a constant,

which may differ from occurrence to occurrence. If it depends upon additional
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parameters, say t, we sometimes indicate this by c(t). Finally, R
+ is the set of

nonnegative real numbers.
Note that all presented results remain valid for N = 1. Here we discuss N ≥ 2

to avoid an extensive distinction of cases (e.g. for p∗ in Lemma 1.9) which is
necessary if N = 1.
Moreover, we shall not search for the weakest possible regularity assumption

on the boundary ∂G. In general, the weak solvability theory for nondegenerate
parabolic problems in L2(IT ,W

1
q (G)) requires only ∂G ∈ C1. In our proofs,

however, we refer to known results on elliptic equations (cf. proof of Theorem 1.17)
as well as to trace and interpolation theorems (cf. Lemma 1.8 and Lemma 1.9)
which are formulated for ∂G ∈ C∞. For this reason this assumption is adopted.
An analogous situation regards the regularity assumption on the coefficients of
the differential operator (cf. Assumption 1.2).

Problem 1.1. We consider the initial boundary value problem

ψ(t, x)
∂u

∂t
+Au = 0 on QT , −

∂u

∂νA
= g(t, x, u) on ΓT , u(0, x) = U0(x),

where A denotes the differential operator

Au := −
N
∑

i,k=1

∂

∂xi

(

aik(x)
∂u

∂xk

)

,

and ∂/∂νA the corresponding conormal derivative

∂u

∂νA
:=

N
∑

i,k=1

aik(x)
∂u

∂xk
cos (xi, ~n) , ~n . . . exterior normal on ∂G.

Assumption 1.2. The operator A, which contains only second partial deriva-
tives, is assumed to be symmetric and uniformly elliptic. Its coefficients aik belong
to C∞

(

Ḡ
)

.

As a consequence of Assumption 1.2, the positive definite and symmetric bi-
linear form (·, ·)A, given by

(u, v)A = (u, v)A,G :=

N
∑

i,k=1

∫

G
aik(x)

∂u

∂xk
(x)

∂v

∂xi
(x) dx,

∀ (u, v) ∈ W 1q (G)×W
1
q′(G), q ≥ 1,

satisfies the inequality

(1)
(

u, |u|p−2u
)

A
≥ c∗

∥

∥

∥
|u|

p−2
2 u

∥

∥

∥

2

∇,2
, c∗ = O

(

p−1
)

,

∀ p ≥ 2, ∀u ∈ W 12 (G) ∩ L∞(G)
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(cf. e.g. [9, Lemma 3]).
In order to formulate our assumptions on the function ψ(t, x), we introduce

the families of open sets E(t) := G \ supp[ψ(t, ·)] and P(t) := G \ E(t), t ∈ IT .
Moreover, {(t, x) ∈ QT : x ∈ E(t)} and {(t, x) ∈ QT : x ∈ P(t)} will be denoted
by ET or PT respectively.

Assumption 1.3. Let ψ : IT × G −→ R
+ be an element of C0,1(IT , Lκ(G)),

where κ ∈ R fulfills κ > max{2, N/2}.
The above defined subsets P(t) ⊆ G are supposed to be nonempty C∞-domains

with ∂P(t) ⊇ ∂G, ∀ t ∈ IT . Then, we assume that 1/ψ(t, ·), t ∈ IT , belongs to
Lβ(P(t)), β > κ/(κ− 2), and satisfies

(2)
∥

∥

∥
ψ−1(t, ·)

∥

∥

∥

β,P(t)
≤ c, ∀ t ∈ IT .

Due to our assumptions on ψ, the functional

‖u‖p,[ψ(t,·)] = ‖u‖p,[ψ(t,·)],P(t) :=

{
∫

G
ψ(t, x)|u(x)|p dx

}
1

p

defines a norm on Lpκ′(P(t)), t ∈ IT , but in general, only a semi-norm on Lpκ′(G).
Since ψ is assumed to be an element of C(IT , Lκ(G)) and satisfies the estimate (2),
we obtain

(3)

‖u‖ β
1+β

p,P(t)
≤
∥

∥

∥
ψ−1(t, ·)

∥

∥

∥

1/p

β,P(t)
‖u‖p,[ψ(t,·)] ≤ c

1/p ‖u‖p,[ψ(t,·)]

≤ c1/p ‖ψ(t, ·)‖
1/p
κ ‖u‖pκ′,P(t) ≤ c

1/p ‖u‖pκ′,P(t),

∀u ∈ Lpκ′(P(t)), ∀ p ≥
1 + β

β
, ∀ t ∈ IT .

Remark 1.4. As a consequence of our assumptions on ψ, the following property
of the domains P(t) can be derived: Let t′ and t′′ be arbitrary points of the time
interval IT . Then, using Hölder’s inequality, we obtain the estimate

meas[P(t′′) \ P(t′)] =

∫

P(t′′)\P(t′)
ψ
− βκ

β+κ (t′′, x)ψ
βκ

β+κ (t′′, x) dx

≤
∥

∥

∥
ψ−1(t′′, ·)

∥

∥

∥

βκ
β+κ

β,P(t′′)\P(t′)
‖ψ(t′′, ·)‖

βκ
β+κ

κ,P(t′′)\P(t′)

≤ c‖ψ(t′′, ·)− ψ(t′, ·)‖
βκ

β+κ
κ .

Thus, the measure of P(t′′) \ P(t′) satisfies the Hölder condition

meas[P(t′′) \ P(t′)] ≤ c|t′′ − t′|
βκ

β+κ .

According to the assumptions on ψ (and A), Problem 1.1 is parabolic on PT
and elliptic on ET . Therefore, out of P(0) a definition of an initial function U0
makes no sense. On the other hand, an extension of U0 to G is required to carry
out the Rothe method. So our assumption on the initial value U0 reads as follows.
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Assumption 1.5. Assume U0 is the restriction of a function U
∗
0 ∈ W 12 (G) ∩

L∞(G) to the subdomain P(0) ⊆ G.

Without loss of generality we may assume that ‖U0‖∞,P(0) = ‖U
∗
0 ‖∞. If not,

the function U∗∗
0 ∈W

1
2 (G) ∩ L∞(G), defined by

U∗∗
0 (x) :=

{

U∗
0 (x), if |U∗

0 (x)| ≤ ‖U0‖∞,P(0)

sign[U∗
0 (x)]‖U0‖∞,P(0), if |U∗

0 (x)| > ‖U0‖∞,P(0)
,

might be chosen instead of U∗
0 .

Assumption 1.6. Let the function g : IT × ∂G× [−R,R ] −→ R,
R > ‖U0‖∞,P(0), satisfy the following conditions.

(C1) (Carathéodory Condition)
(a) For all (t, ξ) ∈ IT × [−R,R ] the mapping x 7−→ g(t, x, ξ) is measur-
able on ∂G.

(b) For almost all x ∈ ∂G the mapping (t, ξ) 7−→ g(t, x, ξ) is continuous
on IT × [−R,R ].

(C2) There is a function g̃ ∈ Lr(∂G), r > N − 1, such that the inequality
|g(t, x, ξ)| ≤ g̃(x) holds for all (t, x, ξ) ∈ IT × ∂G× [−R,R ].

Thus, G(t, v)[x] := g(t, x, v(x)) defines a continuous mapping G : IT ×
BR [L∞(∂G)] −→ Lr(∂G). Moreover, we obtain the local boundedness property

‖g(t, ·, v)‖r,∂G ≤ c, ∀ (t, v) ∈ IT ×BR[L∞(∂G)].

According to our assumptions formulated above, the classical solvability of the
initial boundary value Problem 1.1 may not be expected. Hence we introduce the
following concept of a weak solution.

Definition 1.7. A function u ∈ L2(IT ,W
1
2 (G)) ∩BR[L∞(QT )] is called a weak

solution to the parabolic-elliptic Problem 1.1 if the following conditions are satis-
fied.

(C1) For almost all t ∈ IT , u(t, ·) belongs to BR[L∞(∂G)].
(C2) Let V (QT ) be the set of all v ∈ L2(IT ,W

1
2 (G)) which have a time de-

rivative vt ∈ L1(IT , Lκ′(G)) and fulfil v(T, x) ≡ 0. Then the integral
relation

(4) −

(

u,
∂

∂t
(ψv)

)

PT

− (ψ(0, ·)U0, v(0, ·)) +

∫

IT

(u(t, ·), v(t, ·))A dt

= −(g(·, ·, u), v)ΓT

is satisfied for all v ∈ V (QT ).
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Note that our assumptions on κ and r imply L2(IT ,W
1
2 (G)) ⊂ L2(IT , Lκ′(G)∩

Lr′(∂G)). Moreover, Assumption 1.3 guarantees the existence of the weak de-
rivative ψt ∈ L∞(IT , Lκ(G)), and therefore, (ψv)t ∈ L1(QT ) for v ∈ V (QT ).
Consequently, the integral relation (4) is well-defined.
In the following discussion, we provide some statements which are required

within the scope of the Rothe method. Using the assumption G ∈ C∞, our first
lemma was proved in [16] (cf. 4.7.1 Theorem). It reads as follows:

Lemma 1.8. The real numbers p and δ are assumed to satisfy the conditions
1 < p < ∞, δ > 0. Then there exists a linear continuous trace operator T :

W
1/p+δ
p (G) −→ Lp(∂G).

The following interpolation inequality can be found in [17, Section 1.2.2], and
is based on [16, 1.3.3 Theorem, 4.3.1 Theorem, and 2.4.2 Remark 2].

Lemma 1.9 (Nirenberg-Gagliardo Interpolation). Let p∗ be an arbitrary, but

fixed real number with p∗ <
2N

N−2(1−µ)
, where µ ∈ R satisfies 0 ≤ µ < 1. Then

there exists some θ ∈ (0, 1), such that the inequality ‖u‖µ,p ≤ c‖u‖θ1,2‖u‖
1−θ
γ ,

γ > 1, holds for all p ∈ [1, p∗] and u ∈W
1
2 (G) ∩ L∞(G).

In the course of this paper both Lemma 1.8 and 1.9 shall be applied at the
domains P(t). Thus, the constants arising in the resulting inequalities

‖u‖p,∂G ≤ ‖u‖p,∂P(t) ≤ c(t)‖u‖W 1/p+δ
p (P(t))

, 1 < p <∞, δ > 0, t ∈ IT ,

(5)

‖u‖Wµ
p (P(t))

≤ c(t)‖u‖θ1,2‖u‖
1−θ
γ,P(t)

, γ > 1, 0 ≤ µ < 1,

(6)

∀ p ≤ p∗ <
2N

N − 2(1− µ)
, t ∈ IT ,

depend on the time variable. On the other hand, the outlined technique used
to estimate the Rothe approximations (uniformly with respect to the stepsize of
the discretization) requires the boundedness of {c(t)}t∈IT . For this reason, we
assume the following:

Assumption 1.10. The “parabolic” domains P(t) are assumed to behave in a
manner such that the families of constants {c(t)}t∈IT , occurring in (5) and (6),
are bounded.

Example 1.11. Obviously, Assumption 1.10 is satisfied for invariable P(t) ≡ P .
This special case was investigated in [17, Section 3.2].

Example 1.12. The domains P(t), t ∈ IT , are assumed to satisfy the following
conditions:

(C1) There is a domain P∗ ⊂ R
N of the C∞-class with P∗ ⊆

⋂

t∈IT
P(t) and

∂G ⊆ ∂P∗.
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(C2) For each t ∈ IT exists a C
∞-isomorphism ϕ(t) : P(t) ←→ P∗∗, where

P∗∗ ⊂ R
N is a C∞-domain. The Jacobi determinants of ϕ(t), t ∈ IT , are

uniformly bounded.

Owing to (C1), the application of Lemma 1.8 at the domain P∗ yields the in-
equality

‖u‖p,∂G ≤ ‖u‖p,∂P∗
≤ c‖u‖

W
1/p+δ
p (P∗)

≤ c‖u‖
W
1/p+δ
p (P(t))

,

∀ t ∈ IT , ∀u ∈ W
1/p+δ
p (P(t)),

where c does not depend on t. On the basis of (C2) it can be proved that the set
of constants {c(t)}t∈IT occurring in (6) is also bounded.

Corollary 1.13. Let p∗ be an arbitrary, but fixed real number with 1 ≤ p∗ <
2(N − 1)/(N − 2). Then there exists some θ ∈ (0, 1), such that the inequalities

(E1) ‖u‖p,∂G ≤ c‖u‖
θ
1,2‖u‖

1−θ
γ,P(t)

, γ > 1, ∀ p ∈ [1, p∗],

(E2) ‖u‖
2σ
p,∂G ≤ cǫ‖u‖21,2 + cǫ−c‖u‖

2σ−σθ
1−σθ
1+β

β
γ,[ψ(t,·)]

, γ > 1, ∀σ ∈ (0, 1], ∀ ǫ > 0,

∀ p ∈ [1, p∗],

hold for all t ∈ IT and u ∈W
1
2 (G) ∩ L∞(G).

Proof: With consideration to Assumption 1.10, our assertion (E1) easily follows
from Lemma 1.8 and Lemma 1.9 (cf. [17, Folgerung 1.22]). Applying Young’s
inequality as well as formula (3) to the right hand side of (E1), we obtain the
estimate (E2). �

Corollary 1.14. Let λ be an arbitrary, but fixed real number with λ > λ∗ :=
(1 + β)/(2β). Then,
∣

∣

∣
‖u‖p

p,[ψ(t′,·)]
− ‖u‖p

p,[ψ(t′′,·)]

∣

∣

∣

≤ c

(

ǫ
∥

∥

∥
|u|

p−2
2 u

∥

∥

∥

2

1,2
+ ǫ−c‖u‖

p
λp,[ψ(t′,·)+ψ(t′′,·)]

)

|t′ − t′′|,

∀ t′, t′′ ∈ IT , ∀ p ≥ 2, ∀ ǫ > 0,

holds for all u ∈ W 12 (G) ∩ L∞(G).

Proof: Recalling the assumption ψ ∈ C0,1(IT , Lκ(G)) we obtain

∣

∣

∣
‖u‖

p
p,[ψ(t′,·)]

− ‖u‖
p
p,[ψ(t′′,·)]

∣

∣

∣
=

∣

∣

∣

∣

∣

∫

P(t′)∪P(t′′)
[ψ(t′, x)− ψ(t′′, x)]|u(x)|p dx

∣

∣

∣

∣

∣

≤
∥

∥ψ(t′, ·)− ψ(t′′, ·)
∥

∥

κ ‖u‖
p
pκ′,P(t′)∪P(t′′)

≤ c|t′ − t′′|
∥

∥

∥
|u|

p−2
2 u

∥

∥

∥

2

2κ′,P(t′)∪P(t′′)
,

∀ t′, t′′ ∈ IT .
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Since 1/[ψ(t′, ·) + ψ(t′′, ·)] belongs to Lβ(P(t
′) ∪ P(t′′)), an application of Corol-

lary 1.13 (E2) (with ψ(t
′, ·) + ψ(t′′, ·) instead of ψ(t, ·)) to the right hand side

yields the asserted estimate. �

Throughout the remainder of this paper, we shall continue denoting the real
number (1 + β)/(2β) by λ∗.

Lemma 1.15. The inequality ‖u‖21,2 ≤ c
(

‖u‖2∇,2 + ‖u‖
2
2λ∗,[ψ(t,·)]

)

holds for all

t ∈ IT and all functions u ∈ W
1
2 (G) ∩ L∞(G).

Proof: Because the sets P(t) are assumed to be nonempty subdomains of G,
the functionals

Ft(u) :=







‖u‖2∇,2 +

∣

∣

∣

∣

∣

∫

P(t)
u(x) dx

∣

∣

∣

∣

∣

2






1

2

, t ∈ IT ,

define norms on W 12 (G), which are equivalent to ‖ · ‖1,2 (cf. e.g. [3, 5.11.2 Theo-

rem]). Thus, we obtain ‖u‖21,2 ≤ c(t) Ft(u)
2, ∀ t ∈ IT . Using the Hölder conti-

nuity of meas[P(t)] (cf. Remark 1.4), it can be proved that the set of constants
{c(t)}t∈IT , occurring in these estimates is bounded. Hence, the application of (3)

to the right hand side of Ft(u)
2 ≤ ‖u‖2∇,2 + ‖u‖

2
1,P(t) yields the assertion. �

Our next lemma provides a compactness criterion which shall be used to derive
convergence properties of the Rothe approximations in Lebesgue spaces.

Lemma 1.16. Let γ be a real number with 1/2 < γ ≤ 1. Then, a sequence
{un}

∞
n=1 ⊂ L2(IT ,W

1
2 (G)) is relatively compact in L2γ(PT ), if it satisfies the

conditions

(C1) ‖un‖L2(IT ,W 1
2
(G)) ≤ c, ∀n ∈ N, and

(C2)

∫ T

0
‖un(t+ ǫ, ·)− un(t, ·)‖

2
2γ,P(t) dt ≤ cǫ, ∀ ǫ ∈ (0, T ), ∀n ∈ N.

Proof: The basic idea of the proof may be outlined as follows: Using the as-
sumptions (C1), (C2), as well as Hölder’s inequality, we can show that

∫ T

0

∫

P(t)
|vn(t+ǫ, x+y)−vn(t, x)|

2γ dxdt −→−→ 0 as (ǫ, y) −→ (0, 0), vn := χPT
un,

where χPT
denotes the characteristic function of the cylindrical set PT . Due to

Kolmogoroff’s compactness criterion, this uniform convergence, and ‖un‖2γ,PT
≤

c, ∀n ∈ N, imply the relative compactness of {un}
∞
n=1 in L2γ(PT ).

The details may be adapted from [5, Lemma 2.24], or [17, Lemma 1.41], where
the special cases {γ = 1,P(t) ≡ G} and {P(t) ≡ G} respectively, were considered.

�
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Within the scope of the Rothe method, the evolution Problem 1.1 is approxi-
mated by a sequence of elliptic equations with linear Neumann boundary condi-
tions. An application of the outlined L∞-technique requires the solution of these
discretized problems in W 1q (G) →֒ C(Ḡ), q > N . Using our assumptions on G,
and the uniformly elliptic operator A, the following existence result can be proved:

Theorem 1.17. Let g∗ be an element of Lr(∂G), r > N − 1. The nonnegative
function ψ∗ ∈ Lκ(G), κ > N/2, is supposed to satisfy ‖ψ∗‖1 > 0. Moreover, we
assume u∗ ∈ L∞(G).
Then there are real numbers h∗ > 0 and q > N , such that the elliptic boundary

value problem

ψ∗
u− u∗
h

+Au = 0, −
∂u

∂νA

∣

∣

∣

∣

∂G
= g∗

has a unique weak solution u ∈W 1q (G) →֒ C(Ḡ), provided that 0 < h < h∗.

Proof: Our proof may be outlined as follows: Using sequences of C∞-functions
which converge to ψ∗ or g∗ respectively, we approximate the given problem. With
the aid of a Fredholm alternative, proved by F.E. Browder (cf. [1, Corollary to
Theorem 5]), these “smoothed” elliptic problems can be solved in W 2p (G), p =

2N/(N − 2). Consequently, the required continuity of the desired solution, i.e.,
u ∈W 1q (G) with q > N , is guaranteed by the restriction N ≤ 5.
By means of a priori estimates it can be shown that the solutions of the

“smoothed” problems approach a weak solution to the given elliptic problem
in W 1q (G). The use of the underlying results, proved by M. Schechter (cf. [14,

Theorem 6.1]), requires the assumption aik ∈ C
∞(Ḡ).

We refer to [17, Section 1.4] for the details of the derivation. �

In the proof of Theorem 2.4 we shall use the following weak maximum-minimum
principle, which was proved in [4, Theorem 8.1].

Lemma 1.18. Let the coefficients aik(x) of the uniformly elliptic operator A

be measurable bounded functions on a domain Ω ⊆ R
N . Then, a weak solution

u ∈ W 12 (Ω) to Au = 0 in the sense of (u, v)A,Ω = 0, ∀ v ∈ C
1
0 (Ω), satisfies the

maximum-minimum principle

ess sup
x∈Ω
|u(x)| ≤ ess sup

x∈∂Ω
|u(x)|.

2. Construction and local boundedness of the approximations

The Rothe method is based on a semidiscretization of the given problem with
respect to the time variable. For that purpose, we subdivide IT = [0, T ] into n
subintervals

[ti−1, ti] , ti = t
(n)
i := ihn, hn := T/n, i = 1, . . . , n.
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Then, for each n ≥ 1, Problem 1.1 may be approximated by the sequence of linear,
elliptic boundary value problems

ψiδui + Aui = 0 on G, −
∂ui
∂νA

= gi on ∂G, i = 1, . . . , n,

where δui :=
ui − ui−1

hn
, ψi = ψ(ti, ·), gi = g(ti, ·, ui−1),

and u0 is given by u0(x) := U
∗
0 (x). In weak formulation this discretized problem

reads as follows:

Problem 2.1. Let u0 be defined as u0(x) := U
∗
0 (x). Find functions ui ∈W

1
q (G)∩

BR[C(∂G)], i = 1, . . . , n, such that the equations

(7.i) (ψiδui, v) + (ui, v)A = −(gi, v)∂G, i = 1, . . . , n,

are satisfied for all v ∈ V (G) :=W 1q′(G) ∩ Lr′(∂G) ∩ Lκ′(G).

According to the locally formulated assumptions on the boundary function
g, a solution of the discretized Problem 2.1 must be sought in the closed ball
BR[C(∂G)]. On the other hand, known existence results from the elliptic equation
theory cannot be applied under such a restriction. For this reason, we first consider
a slightly modified discretized problem, where the use of

gR(t, x, ξ) :=

{

g(t, x, ξ), if |ξ| ≤ R

g(t, x,R sign(ξ)), if |ξ| > R

enables us to apply the local assumptions on g globally.

Problem 2.2. Let υ0 be defined by υ0(x) := U∗
0 (x). Find functions υi ∈

W 1q (G) ∩ C(∂G), i = 1, . . . , n, such that

(8.i) (ψiδυi, v) + (υi, v)A = −
(

gRi , v
)

∂G
, ∀ v ∈ V (G).

As long as the subdivision of the time interval is sufficiently fine, i.e., ∀hn ≤
hn∗
, the “extended” discretized Problem 2.2 may be solved on the basis of The-

orem 1.17. According to that existence result, there is a unique solution ui ∈
W 1q (G), q > N , to the linear elliptic equation (8.i), provided that the previ-

ous function ui−1 ∈ C(Ḡ) is already known. Starting with i = 1, this iterative
procedure yields:

Lemma 2.3. Assuming that the subdivision of IT is sufficiently fine, i.e., ∀n ≥
n∗, the “extended” discretized equations (8.i), i = 1, . . . , n, have unique solutions
υi ∈ W

1
q (G), q > N .

Since the functions υi are continuous on ∂G, they fulfil the original discretized
equations (7.i), provided that they belong to the closed ball BR[C(∂G)]. Using
this basic idea, a local existence result for the discretized Problem 2.1 can be
proved.
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Theorem 2.4. There exist a time T∗ ∈ (0, T ] and a natural number n∗, such
that the following statements are valid:

(S1) For all subdivisions of IT with n ≥ n∗, the discretized equations (7.i)
are uniquely solvable in W 1q (G), q > N , providing the corresponding ti
satisfies ti ≤ T∗.

(S2) The solutions ui ∈ W
1
q (G) →֒ C(Ḡ) of (7.i), ti ≤ T∗, fulfil the estimate

max
ti≤t
‖ui‖C(Ḡ) ≤ exp(ct

c)
{

‖U0‖
2
∞,P(0) + ct

}α
≤ R,

∀ t ∈ IT∗ := [0, T∗], ∀n ≥ n∗,

where α ∈ R belongs to (0, 1/2], and takes on the value 1/2 if
‖U0‖∞,P(0) > 0.

Proof: The basic idea of our proof consists in showing, that up to a certain point
T∗ ∈ (0, T ] the solutions υi ∈ W

1
q (G) of the “extended” discretized Problem 2.2

belong to BR[C(Ḡ)] ⊂ BR[C(∂G)], and thus satisfy the corresponding original
discretized equations (7.i) as well. For that purpose, we consider the integral
relations (8.i). Since υi particularly belongs to W

1
2 (G)∩L∞(G), |υi|

p−2υi, p ≥ 2,

is an element of W 12 (G) →֒ V (G) (cf. [9, Lemma 2]) and may be employed as a
test function:

(ψiδυi, |υi|
p−2υi)+(υi, |υi|

p−2υi)A = −
(

gRi , |υi|
p−2υi

)

∂G
, i = 1, . . . , n, ∀ p ≥ 2.

The application of
(

ψi(υi − υi−1), |υi|
p−2υi

)

= ‖υi‖
p
p,[ψi]

− (ψiυi−1, |υi|
p−2υi)

≥ ‖υi‖
p
p,[ψi]

− ‖υi−1‖p,[ψi]‖υi‖
p
p′

p,[ψi]

≥
1

p
‖υi‖

p
p,[ψi]

−
1

p
‖υi−1‖

p
p,[ψi]

, ∀ p ≥ 2,

and (1) to the left hand side of this equation yields

(9) ‖υi‖
p
p,[ψi]

− ‖υi−1‖
p
p,[ψi]

+ chn‖wi‖
2
∇,2 ≤ −phn

(

gRi , |υi|
p−2υi

)

∂G
,

i = 1, . . . , n, ∀ p ≥ 2,

where wi ∈ W
1
2 (G) ∩ L∞(G) is defined as wi := |υi|

p−2
2 υi. According to Corol-

lary 1.14, the two estimates

‖υi‖
p
p,[ψi]

≥ ‖υi‖
p
p,[ψi+1]

− cǫhn‖wi‖
2
1,2 − cǫ

−chn‖υi‖
p
λp,[ψi+ψi+1]

,

−‖υi−1‖
p
p,[ψi]

≥ −‖υi−1‖
p
p,[ψi−1]

− cǫhn‖wi−1‖
2
1,2 − cǫ

−chn‖υi−1‖
p
λp,[ψi−1+ψi]

,

∀ p ≥ 2, ∀ ǫ > 0,
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hold for an arbitrary, but fixed real number λ ∈ (λ∗, 1]. Applying them separately
to formula (9), we obtain both

(10)

‖υi‖
p
p,[ψi+1]

− ‖υi−1‖
p
p,[ψi]

+ chn‖wi‖
2
∇,2

≤ −phn

(

gRi , |υi|
p−2υi

)

∂G
+ cǫhn‖wi‖

2
1,2

+ cǫ−chn‖υi‖
p
λp,[ψi+ψi+1]

, i = 1, . . . , n, ∀ p ≥ 2, ∀ ǫ > 0,

and

‖υi‖
p
p,[ψi]

− ‖υi−1‖
p
p,[ψi−1]

+ chn‖wi‖
2
∇,2

≤ −phn

(

gRi , |υi|
p−2υi

)

∂G
+ cǫhn‖wi−1‖

2
1,2

+ cǫ−chn‖υi−1‖
p
λp,[ψi−1+ψi]

, i = 1, . . . , n, ∀ p ≥ 2, ∀ ǫ > 0.

The sum of these two inequalities reads as follows:

(11)

‖υi‖
p
p,[ψi+ψi+1]

+ chn‖wi‖
2
∇,2

≤ ‖υi−1‖
p
p,[ψi−1+ψi]

+ phn

∣

∣

∣

(

gRi , |υi|
p−2υi

)

∂G

∣

∣

∣

+ cǫhn

(

‖wi−1‖
2
1,2 + ‖wi‖

2
1,2

)

+ cǫ−chn

(

‖υi−1‖
p
λp,[ψi−1+ψi]

+ ‖υi‖
p
λp,[ψi+ψi+1]

)

,

i = 1, . . . , n, ∀ p ≥ 2, ∀ ǫ > 0.

As a consequence of Corollary 1.13 (E2) and our assumption r > N − 1, the
estimate

‖w‖
2

p′

2 r′

p′
,∂G
≤ cǫ‖w‖21,2 + cǫ

−c‖w‖
2 1−θ

p′−θ

2λ,[ψ(t,·)]
, θ ∈ (0, 1),

∀w ∈ W 12 (G) ∩ L∞(G), ∀ ǫ > 0, ∀ t ∈ IT ,

holds for all p ≥ 2r/(r + 1). Thus, we have the inequality

(12)

∣

∣

∣

(

gRi , |υi|
p−2υi

)

∂G

∣

∣

∣
≤
∥

∥

∥
gRi

∥

∥

∥

r,∂G

∥

∥

∥
|υi|

p−1
∥

∥

∥

r′,∂G
≤ c‖wi‖

2

p′

2 r′

p′
,∂G

≤ cǫ‖wi‖
2
1,2 + cǫ

−c‖υi‖
̺(p)p
λp,[ψi]

, ̺(p) :=
1− θ

p′ − θ
,

i = 1, . . . , n, ∀ p ≥ 2, ∀ ǫ > 0.



Parabolic-elliptic equation with nonlinear boundary condition 25

Using Lemma 1.15, its application to the right hand side of (11) yields

‖υi‖
p
p,[ψi+ψi+1]

+ chn‖wi‖
2
∇,2

≤ ‖υi−1‖
p
p,[ψi−1+ψi]

+ cǫphn‖wi‖
2
1,2 + cǫ

−cphn‖υi‖
̺(p)p
λp,[ψi]

+ cǫhn

(

‖wi−1‖
2
1,2 + ‖wi‖

2
1,2

)

+ cǫ−chn

(

‖υi−1‖
p
λp,[ψi−1+ψi]

+ ‖υi‖
p
λp,[ψi+ψi+1]

)

≤ ‖υi−1‖
p
p,[ψi−1+ψi]

+ cǫphn

(

‖wi−1‖
2
∇,2 + ‖wi‖

2
∇,2

)

+ cǫ−cphn‖υi‖
̺(p)p
λp,[ψi+ψi+1]

+ cǫ−chn

(

‖υi−1‖
p
λp,[ψi−1+ψi]

+ ‖υi‖
p
λp,[ψi+ψi+1]

)

,

i = 1, . . . , n, ∀ p ≥ 2, ∀ ǫ > 0.

We sum up these estimates for i = 2, . . . , j, j ∈ {2, . . . , n}, and obtain

‖υj‖
p
p,[ψj+ψj+1]

+ chn

j
∑

i=2

‖wi‖
2
∇,2

≤ ‖υ1‖
p
p,[ψ1+ψ2]

+ cǫphn

j
∑

i=1

‖wi‖
2
∇,2

+ cǫ−cphn

j
∑

i=1

(

‖υi‖
p
λp,[ψi+ψi+1]

+ ‖υi‖
̺(p)p
λp,[ψi+ψi+1]

)

, ∀ p ≥ 2.

Now the both formulas (9) and (10) are considered for the case when i = 1. In
virtue of (12) and Lemma 1.15, their sum may be estimated as follows:

‖υ1‖
p
p,[ψ1+ψ2]

+ chn‖w1‖
2
∇,2

≤ ‖υ0‖
p
p,[2ψ1]

+ 2phn

∣

∣

∣

(

gR1 , |υ1|
p−2υ1

)

∂G

∣

∣

∣
+ cǫhn‖w1‖

2
1,2

+ cǫ−chn‖υ1‖
p
λp,[ψ1+ψ2]

≤ ‖υ0‖
p
p,[2ψ1]

+ cǫphn‖w1‖
2
∇,2 + cǫ

−cphn

(

‖υ1‖
p
λp,[ψ1+ψ2]

+ ‖υ1‖
̺(p)p
λp,[ψ1+ψ2]

)

.

Consequently, from the previous inequality, we find
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‖υj‖
p
p,[ψj+ψj+1]

+ chn

j
∑

i=1

‖wi‖
2
∇,2

≤ ‖υ0‖
p
p,[2ψ1]

+ cǫphn

j
∑

i=1

‖wi‖
2
∇,2

+ cǫ−cphn

j
∑

i=1

(

‖υi‖
p
λp,[ψi+ψi+1]

+ ‖υi‖
̺(p)p
λp,[ψi+ψi+1]

)

,

j = 1, . . . , n, ∀ p ≥ 2, ∀ ǫ > 0.

By choosing ǫ := δ/p with a sufficiently small δ > 0, we obtain
(13)

‖υj‖
p
p,[ψj+ψj+1]

≤ ‖υ0‖
p
p,[2ψ1]

+ cpchn

j
∑

i=1

(

‖υi‖
p
λp,[ψi+ψi+1]

+ ‖υi‖
̺(p)p
λp,[ψi+ψi+1]

)

≤ 2‖ψ‖C(IT ,L1(G))‖U
∗
0 ‖
p
∞ + cp

chn

j
∑

i=1

(

‖υi‖
p
λp,[ψi+ψi+1]

+ ‖υi‖
̺(p)p
λp,[ψi+ψi+1]

)

≤M‖U∗
0‖
p
∞ + cp

ctj

(

max
i≤j
‖υi‖

p
λp,[ψi+ψi+1]

+max
i≤j
‖υi‖

̺(p)p
λp,[ψi+ψi+1]

)

,

M := 2‖ψ‖C(IT ,L1(G)), j = 1, . . . , n, ∀ p ≥ 2,

which leads to

max
ti≤t
‖υi‖

p
p,[ψi+ψi+1]

≤M‖U∗
0‖
p
∞ + cp

ct

(

max
ti≤t
‖υi‖

p
λp,[ψi+ψi+1]

+max
ti≤t
‖υi‖

̺(p)p
λp,[ψi+ψi+1]

)

,

∀ t ∈ IT , ∀ p ≥ 2.

On the basis of this inequality, the norm ‖υi‖p,[ψi+ψi+1], p ≥ 2, may be estimated

by ‖υi‖2,[ψi+ψi+1]. For that purpose, we consider the sequence pk := 2λ
−k,

k = 0, 1, 2, . . . . Then, using the notations

mk(n, t) :=M
−1/pk max

ti≤t
‖υi‖pk,[ψi+ψi+1], ̺k := ̺(pk),

the previous inequality can be written in the form

mk(n, t) ≤
{

‖U∗
0 ‖
pk
∞ +M

(1−λ)/λcpcktm
pk
k−1(n, t) +M

(ρk−λ)/λcpcktm
ρkpk
k−1 (n, t)

}1/pk

≤
{

‖U∗
0 ‖
pk
∞ + cp

c
kt
[

mpk
k−1(n, t) +m

ρkpk
k−1 (n, t)

]}1/pk
, k = 1, 2, . . . , ∀ t ∈ IT .
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As it was shown in [12, Proof of Theorem 3.1] or [17, Hilfssatz 2.13], carrying out
this recursion yields

(14) mk(n, t) ≤ exp(ct
c)max {‖U∗

0 ‖∞,m0(n, t)}
2α , k = 1, 2, . . . , ∀ t ∈ IT ,

where α ∈ R belongs to (0, 1/2] and takes on the value 1/2 if ‖U∗
0 ‖∞ > 0. Now

the expression m0(n, t) will be estimated on the basis of formula (13), which is
considered for the case where p = 2. Owing to this inequality, the following holds

‖υj‖
2
2,[ψj+ψj+1]

≤M‖U∗
0‖
2
∞ + chn

j
∑

i=1

(

‖υi‖
2
2,[ψi+ψi+1]

+ ‖υi‖
2̺(2)
2,[ψi+ψi+1]

)

≤M‖U∗
0‖
2
∞ + ctj + chn

j
∑

i=1

‖υi‖
2
2,[ψi+ψi+1]

, j = 1, . . . , n.

By means of Gronwall’s Lemma in the discrete form (cf. [6, Lemma 1.3.19]) we
consequently obtain

‖υj‖
2
2,[ψj+ψj+1]

≤ (1 + chn)
(

M‖U∗
0‖
2
∞ + ctj

)

exp(ctj−1), j = 1, . . . , n,

so that m0(n, t) may be estimated by

m0(n, t) =M
− 1
2 max
ti≤t
‖υi‖2,[ψi+ψi+1] ≤

[

(1 + chn)
(

‖U∗
0 ‖
2
∞ + ct

)

exp(ct)
]
1

2
,

∀ t ∈ IT .

Therefore, from (14) it results

M
− 1

pk max
ti≤t
‖υi‖pk,[ψi+ψi+1] ≤ exp (ct

c)
[

(1 + chn)
(

‖U∗
0 ‖
2
∞ + ct

)

exp(ct)
]α

≤ exp (ctc)
(

‖U∗
0‖
2
∞ + ct

)α
, ∀ k ∈ N, ∀ t ∈ IT .

Since the right hand side of this inequality does not depend on pk, and

lim
p→∞

‖u‖p,[ψ(t′,·)+ψ(t′′,·)] = ‖u‖∞,P(t′)∪P(t′′),

∀u ∈ L∞(P(t
′) ∪ P(t′′)), ∀ t′, t′′ ∈ IT ,

taking the limit as pk →∞ yields

max
ti≤t
‖υi‖C

�
P(ti)∪P(ti+1)

� = max
ti≤t
‖υi‖∞,P(ti)∪P(ti+1)

≤ exp (ctc)
(

‖U∗
0 ‖
2
∞ + ct

)α
, ∀ t ∈ IT .
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Moreover, as ∂E(ti) is contained in P(ti) ∪ P(ti+1), according to the weak
maximum-minimum principle formulated in Lemma 1.18, we obtain

max
ti≤t
‖υi‖C(Ḡ) ≤ maxti≤t

‖υi‖C
�
P(ti)∪P(ti+1)

�.
Thus, our assumption ‖U0‖∞,P(0) = ‖U

∗
0 ‖∞ < R enables us to fix up a point

T∗ ∈ (0, T ] such that

max
ti≤t
‖υi‖C(Ḡ) ≤ exp (ct

c)
(

‖U∗
0 ‖
2
∞ + ct

)α
≤ R, ∀ t ∈ [0, T∗].

So the functions υi defined on ti ×G, ti ≤ T∗, belong to BR[C(∂G)] and, conse-
quently, satisfy the corresponding (original) discretized equations (7.i).
Since any solution of (7.i) fulfills the “extended” discretized equation (8.i) as

well, its uniqueness follows from Lemma 2.3. So our proof is complete. �

Theorem 2.4 guarantees the weak solvability of the discretized equations (7.i)
up to the point T∗ ∈ (0, T ], which does not depend upon the subdivision of the
time interval IT . Throughout the remainder of this paper, the greatest i ∈ N

with ti = ihn ≤ T∗ will be denoted by i∗ = i∗(n). By piecewise linear or constant
extension of the solutions ui, i ≤ i∗(n), respectively, for each n ≥ n∗ we obtain
the Rothe approximations

u(n)(t, x) :=

{

ui−1(x) + (t− ti−1) δui(x) ∀ t ∈ [ti−1, ti], 1 ≤ i ≤ i∗

ui∗(x) + (t− ti∗) δui∗(x) ∀ t ∈ [ti∗ , T∗]
,

ū(n)(t, x) :=











U0(x) ∀ t ∈ [−hn, 0]

ui(x) ∀ t ∈ (ti−1, ti], 1 ≤ i ≤ i∗

ui∗(x) ∀ t ∈ [ti∗ , T∗]

,

which are defined on QT∗ := IT∗ × G. Owing to Theorem 2.4 they satisfy the
estimates

∥

∥

∥
u(n)(t, ·)

∥

∥

∥

C(Ḡ)
≤ exp (ctc)

(

‖U0‖
2
∞,P(0) + ct

)α
≤ R, ∀ t ∈ [0, T∗ − hn],

(15)

∥

∥

∥
ū(n)(t, ·)

∥

∥

∥

C(Ḡ)
≤ exp (ctc)

(

‖U0‖
2
∞,P(0) + ct

)α
≤ R, ∀ t ∈ [−hn, T∗].

(16)

Moreover, we introduce the functions

ḡ(n)(t, x) :=











g0(x) = g(0, x, U0(x)), t = 0

gi(x), ∀ t ∈ (ti−1, ti], 1 ≤ i ≤ i∗

gi∗(x), ∀ t ∈ [ti∗ , T∗]

,

ψ̄(n)(t, x) :=











ψ0(x), t = 0

ψi(x), ∀ t ∈ (ti−1, ti], 1 ≤ i ≤ i∗

ψi∗(x), ∀ t ∈ [ti∗ , T∗]

,
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so that the solved discretized equations (7.i), i ≤ i∗(n), may be extended to

(

ψ̄(n)(t, ·)
∂u(n)

∂t
(t, ·), v(t, ·)

)

+
(

ū(n)(t, ·), v(t, ·)
)

A

= −
(

ḡ(n)(t, ·), v(t, ·)
)

∂G
, ∀ t ∈ IT∗ , ∀ v ∈ V (QT∗).

By integrating this formula over IT∗ the following statement results:

Approximation Scheme 2.5. For all n ≥ n∗, the functions u
(n) and ū(n) fulfil

the integral relation

(17) −

(

u(n),
∂

∂t
(ψv)

)

QT∗

− (ψ(0, ·)U0, v(0, ·)) +

(

(

ψ̄(n) − ψ
) ∂u(n)

∂t
, v

)

QT∗

+

∫

IT∗

(

ū(n)(t, ·), v(t, ·)
)

A
dt = −

(

ḡ(n), v
)

ΓT∗

, ∀ v ∈ V (QT∗).

3. The convergence of the approximations to a solution

By a limit process in Approximation Scheme 2.5 we will show that subsequences

of
{

u(n)
}∞
n=1 and

{

ū(n)
}∞
n=1 actually approach a weak solution to Problem 1.1.

The derivation of appropriate convergence statements requires various a priori
estimates which are based on the following lemma:

Lemma 3.1. For all subdivisions of IT with n ≥ n∗, the solutions ui ∈ W
1
q (G)

of the discretized equations (7.i), i ≤ i∗(n), satisfy the estimates

(E1) hn
∑

ti≤T∗

‖ui‖
2
1,2 ≤ c, h2n

∑

t1≤ti≤T∗

‖δui‖
2
2,[ψi]

≤ c, and

(E2) hn
∑

tj≤T∗−tk

‖uj+k − uj‖
2
2,[ψj]

≤ ckhn = ctk, ∀ k ∈ {0, 1, . . . , i∗(n)}.

Proof: In order to show the estimates stated in (E1) are satisfied, we first
consider the discretized equations (7.i), i ≤ i∗(n), with v = ui as test functions.
The application of

(ψi(ui − ui−1), ui) =
1

2

(

‖ui‖
2
2,[ψi]

− ‖ui−1‖
2
2,[ψi]

+ ‖ui − ui−1‖
2
2,[ψi]

)

and (1) to the left hand side of this formula yields

‖ui‖
2
2,[ψi]

− ‖ui−1‖
2
2,[ψi]

+ ‖ui − ui−1‖
2
2,[ψi]

+ chn‖ui‖
2
∇,2 ≤ −2hn(gi, ui)∂G,

i = 1, . . . , i∗(n).
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Going through the same steps which led from (9) to (10) (with p = 2 and λ = 1)
and using Lemma 1.15, we obtain

‖ui‖
2
2,[ψi+1]

+ h2n‖δui‖
2
2,[ψi]

+ chn‖ui‖
2
∇,2

≤ ‖ui−1‖
2
2,[ψi]

+ 2hn |(gi, ui)∂G|+ cǫhn‖ui‖
2
∇,2 + cǫ

−chn‖ui‖
2
2,[ψi+ψi+1]

,

i = 1, . . . , i∗(n), ∀ ǫ > 0.

Since the functions ui, i ≤ i∗(n), belong to the closed ball BR[C(Ḡ)], the integrals
(gi, ui)∂G are uniformly bounded. Consequently we obtain the inequality

‖ui‖
2
2,[ψi+1]

+ h2n‖δui‖
2
2,[ψi]

+ chn‖ui‖
2
∇,2

≤ ‖ui−1‖
2
2,[ψi]

+ chn + cǫhn‖ui‖
2
∇,2 + cǫ

−chn‖ui‖
2
2,[ψi+ψi+1]

,

i = 1, . . . , i∗(n), ∀ ǫ > 0,

which will be summed up for i = 1, . . . , j, j ∈ {1, . . . , i∗(n)}:

‖uj‖
2
2,[ψj+1]

+ h2n

j
∑

i=1

‖δui‖
2
2,[ψi]

+ chn

j
∑

i=1

‖ui‖
2
∇,2

≤ ‖u0‖
2
2,[ψ1]

+ cǫhn

j
∑

i=1

‖ui‖
2
∇,2 + c(ǫ)tj , ∀ ǫ > 0.

Our assertion (E1) follows from this estimate by choosing ǫ > 0 sufficiently small.
The proof of (E2) is also based on the discretized equations (7.i), i ≤ i∗(n).

Using v = uj+k − uj , 0 ≤ j ≤ j + k ≤ i∗, as test function, we sum them up for
i = j + 1, . . . , j + k. In view of the identity

j+k
∑

i=j+1

(

ψi(ui − ui−1), uj+k − uj
)

=

j+k
∑

i=j+1

(

ψiui − ψi−1ui−1, uj+k − uj
)

−

j+k
∑

i=j+1

(

(ψi − ψi−1)ui−1, uj+k − uj
)

=
(

ψj+kuj+k − ψjuj , uj+k − uj
)

−

j+k
∑

i=j+1

(

(ψi − ψi−1)ui−1, uj+k − uj
)

=
∥

∥uj+k − uj
∥

∥

2
2,[ψj ]

+
(

(ψj+k − ψj)uj+k, uj+k − uj
)

−

j+k
∑

i=j+1

(

(ψi − ψi−1)ui−1, uj+k − uj
)

,
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we have

‖uj+k − uj‖
2
2,[ψj]

+ hn

j+k
∑

i=j+1

(ui, uj+k − uj)A = −hn

j+k
∑

i=j+1

(gi, uj+k − uj)∂G

+

j+k
∑

i=j+1

(

(ψi − ψi−1)ui−1, uj+k − uj
)

−
(

(ψj+k − ψj)uj+k, uj+k − uj
)

.

Since the functions ui, i ≤ i∗(n), belong to BR[C(Ḡ)], an application of Hölder’s
inequality to the right hand side leads to

‖uj+k − uj‖
2
2,[ψj ]

≤ hn

j+k
∑

i=j+1

∣

∣(gi, uj+k − uj)∂G
∣

∣

+

j+k
∑

i=j+1

∣

∣

(

(ψi − ψi−1)ui−1, uj+k − uj
)
∣

∣

+
∣

∣

(

(ψj+k − ψj)uj+k, uj+k − uj
)∣

∣+ hn

j+k
∑

i=j+1

∣

∣(ui, uj+k − uj)A
∣

∣

≤ chn

j+k
∑

i=j+1

‖gi‖r,∂G + c

j+k
∑

i=j+1

‖ψi − ψi−1‖κ + c‖ψj+k − ψj‖κ

+ hn

j+k
∑

i=j+1

∣

∣(ui, uj+k − uj)A
∣

∣ .

In virtue of the local boundedness of g(·, ·, ξ), and the assumption
ψ ∈ C0,1(IT , Lκ(G)), it follows that

‖uj+k − uj‖
2
2,[ψj ]

≤ ckhn + hn

j+k
∑

i=j+1

∣

∣(ui, uj+k − uj)A
∣

∣

≤ ckhn + chn

j+k
∑

i=j+1

‖ui‖∇,2‖uj+k − uj‖∇,2

≤ ckhn + ckhn‖uj+k‖
2
∇,2 + ckhn‖uj‖

2
∇,2 + chn

j+k
∑

i=j+1

‖ui‖
2
∇,2 .
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Summing up this formula for j = 0, 1, . . . , i∗(n)− k, we obtain

i∗−k
∑

j=0

‖uj+k − uj‖
2
2,[ψj]

≤ ck(i∗ − k + 1)hn + ckhn

i∗
∑

j=0

‖uj‖
2
∇,2 + chn

i∗−k
∑

j=0

j+k
∑

i=j+1

‖ui‖
2
∇,2 .

So, with consideration to

i∗−k
∑

j=0

j+k
∑

i=j+1

‖ui‖
2
∇,2 =

i∗−k
∑

j=0

k
∑

i=1

‖ui+j‖
2
∇,2 =

k
∑

i=1

i∗−k
∑

j=0

‖ui+j‖
2
∇,2

≤

k
∑

i=1

i∗
∑

j=0

‖uj‖
2
∇,2 ≤ k

i∗
∑

j=0

‖uj‖
2
∇,2 ,

we have the inequality

i∗−k
∑

j=0

‖uj+k − uj‖
2
2,[ψj ]

≤ ck + ckhn

i∗
∑

j=0

‖uj‖
2
∇,2 ,

which proves our assertion (E2) since (E1) guarantees the boundedness of

hn
∑i∗
j=0 ‖uj‖

2
∇,2. �

Corollary 3.2. Let ν = 2β/(1 + β) . Then for all n ≥ n∗ the functions u
(n) ∈

C
(

IT∗ , C
(

Ḡ
))

and ū(n) ∈ L∞
(

IT∗ , C
(

Ḡ
))

satisfy the estimates

(E1)

∫

IT∗

∥

∥

∥
u(n)(t, ·)− ū(n)(t, ·)

∥

∥

∥

2

ν,P(t)
dt ≤ chn,

(E2)

∫

IT∗

∥

∥

∥
ū(n)(t, ·)− ū(n)(t− hn, ·)

∥

∥

∥

2

ν,P(t)
dt ≤ chn,

(E3)

∫ T∗−ǫ

0

∥

∥

∥
ū(n)(t+ ǫ, ·)− ū(n)(t, ·)

∥

∥

∥

2

ν,P(t)
dt ≤ cǫ, ∀ ǫ ∈ (0, T∗),

(E4)

∫

IT∗

∥

∥

∥
u
(n)
t (t, ·)

∥

∥

∥

2

ν,P(t)
dt ≤ ch−1n ,

(E5)
∥

∥

∥
u(n)

∥

∥

∥

L2(IT∗
,W 1
2
(G))
≤ c,

∥

∥

∥
ū(n)

∥

∥

∥

L2(IT∗
,W 1
2
(G))
≤ c.

Proof: Let t ∈ (0, T∗) be an arbitrary point of time, which belongs to the
subinterval (tj−1, tj ]. Then, owing to formula (3) with p = 2, Corollary 1.14 with
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λ = 1, and Theorem 2.4 the following holds:

(18)

‖uj+k − uj‖
2
ν,P(t) ≤ c‖uj+k − uj‖

2
2,[ψ(t,·)]

≤ c‖uj+k − uj‖
2
2,[ψj]

+ chn‖uj+k − uj‖
2
1,2

+ chn‖uj+k − uj‖
2
2,[ψ(t,·)+ψj ]

≤ c‖uj+k − uj‖
2
2,[ψj]

+ chn

(

1 + ‖uj‖
2
1,2 + ‖uj+k‖

2
1,2

)

.

Since an arbitrary, but fixed real number ǫ ∈ (0, T∗) may be expressed as ǫ =
tk−1 + ǫ

′, where k = k(n) depends on the subdivision n, and ǫ′ ∈ R satisfies the
condition 0 < ǫ′ ≤ hn, in virtue of Lemma 3.1 we obtain

∫ T∗−ǫ

0

∥

∥

∥
ū(n)(t+ ǫ, ·)− ū(n)(t, ·)

∥

∥

∥

2

ν,P(t)
dt

≤

i∗−k+1
∑

j=1

∫ tj−ǫ
′

tj−1

‖uj+k−1 − uj‖
2
ν,P(t) dt+

i∗−k
∑

j=1

∫ tj

tj−ǫ′
‖uj+k − uj‖

2
ν,P(t) dt

≤

i∗−k+1
∑

j=1

∫ tj−ǫ
′

tj−1

‖uj+k−1 − uj‖
2
2,[ψj]

dt+

i∗−k
∑

j=1

∫ tj

tj−ǫ′
‖uj+k − uj‖

2
2,[ψj ]

dt

+ c · ϑ(k − 1) · hn

i∗
∑

j=1

∫ tj−ǫ
′

tj−1

(

1 + ‖uj‖
2
1,2

)

dt+ chn

i∗
∑

j=1

∫ tj

tj−ǫ′

(

1 + ‖uj‖
2
1,2

)

dt

≤ c(k − 1)(hn − ǫ
′) + ckǫ′ + c[ϑ(k − 1)(hn − ǫ

′) + ǫ′] ≤ cǫ,

with ϑ(0) := 0 and ϑ(i) := 1 ∀ i ∈ N, i ≥ 1.

Thus the assertion (E3) is proved. Now, setting k = 1, we sum up (18) for
j = 1, . . . , i∗(n). With Lemma 3.1, this gives the estimate

h2n

i∗
∑

j=1

‖δuj‖
2
ν,P(t) ≤ ch

2
n

i∗
∑

j=1

‖δuj‖
2
2,[ψj]

+ chn

i∗
∑

j=1

(

1 + ‖uj‖
2
1,2

)

≤ c,

which, in view of the definition of the functions u(n), ū(n), leads to the assertions
(E1), (E2) and (E4). Since (E5) immediately follows from Lemma 3.1, our proof
is complete. �

Now the main result of this paper can be formulated:

Theorem 3.3. There are subsequences
{

u(nk)
}∞
k=1 ⊆

{

u(n)
}∞
n=n∗

,
{

ū(nk)
}∞
k=1

⊆
{

ū(n)
}∞
n=n∗

, for which the following convergence properties hold:

(C0)
{

ū(nk)
}∞
k=1 is weakly convergent in L2(IT∗ ,W

1
2 (G)) to a function u.
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(C1) Let p∗ be an arbitrary, but fixed real number with 1 ≤ p∗ < ∞. Then
both subsequences approach the restriction of u ∈ L2(IT∗ ,W

1
2 (G)) to PT∗

in Lp∗(PT∗).
(C2) Let p∗ be an arbitrary, but fixed real number with 1 ≤ p∗ <∞. Then the

subsequences converge in Lp∗(ΓT∗) to u.

The limit function u ∈ L2(IT∗ ,W
1
2 (G)) is a weak solution to the parabolic-elliptic

initial boundary value Problem 1.1 in the sense of Definition 1.7.

Proof: Our proof is subdivided in two sections. First the asserted convergence
statements will be shown. On the basis of these properties the weak solvability of
our Problem 1.1 can be proved by means of a limit process in the Approximation
Scheme 2.5.

(a) According to Corollary 3.2 (E5) the sequence
{

ū(n)
}∞
n=n∗

is bounded in

L2(IT∗ ,W
1
2 (G)). Thus, there is a subsequence

{

ū(nk)
}∞
k=1, having the conver-

gence property (C0).
For simplicity’s sake, the indices {nk}

∞
k=1 will be retained in all the subse-

quences throughout the remainder of this proof.
The derivation of our assertion (C1) is based on the compactness criterion

formulated in Lemma 1.16. Because of Corollary 3.2 (E3), (E5) its application
leads to the following statement:

There exists a subsequence
{

ū(nk)
}∞
k=1 which is convergent in Lν(PT∗) to a

function υ. In view of (C0) we may show by standard arguments that υ is the

restriction of u ∈ L2(IT∗ ,W
1
2 (G)) to PT∗ . Due to Corollary 3.2 (E1)

{

u(nk)
}∞
k=1

tends to the same limit u ∈ Lν(PT∗).
On the basis of Lebesgue’s theorem (on majorized convergence) these results

can be extended to Lp∗(PT∗), 1 ≤ p∗ < ∞, as follows: As a consequence of

their convergence in Lν(PT∗),
{

u(nk)
}∞
k=1 and

{

ū(nk)
}∞
k=1 contain subsequences

{

u(nk)(t, x)
}∞
k=1,

{

ū(nk)(t, x)
}∞
k=1, which tend to u(t, x) pointwise almost every-

where on PT∗ (cf. e.g. [3, 2.8.1 Theorem (ii)]). Moreover, according to (16), the
limit element u belongs to the closed ball BR[L∞(PT∗)]. Now we can see that
the following conditions are satisfied:

(a) Almost everywhere on PT∗ the functions
∣

∣

∣
u(nk)(t, x)− u(t, x)

∣

∣

∣

p∗
,

∣

∣

∣
ū(nk)(t, x) − u(t, x)

∣

∣

∣

p∗
are integrable and tend to zero as k→∞.

(c) According to the formulas (15), (16) they can be bounded by a constant
almost everywhere on PT∗ .

Therefore, the application of Lebesgue’s theorem leads to

lim
k→∞

∥

∥

∥
u(nk) − u

∥

∥

∥

p∗

p∗,PT∗

=

∫

PT∗

lim
k→∞

∣

∣

∣
u(nk)(t, x)− u(t, x)

∣

∣

∣

p∗
dxdt = 0,

lim
k→∞

∥

∥

∥
ū(nk) − u

∥

∥

∥

p∗

p∗,PT∗

= 0.
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The convergence property (C2) can be derived with the aid of Corollary 1.13
(E1). According to the interpolation inequality which was formulated there, the

functions u(m,n) := u(m) − u(n) satisfy

∥

∥

∥
u(m,n)(t, ·)

∥

∥

∥

γ0,∂G
≤ c

∥

∥

∥
u(m,n)(t, ·)

∥

∥

∥

1−θ

1,2

∥

∥

∥
u(m,n)(t, ·)

∥

∥

∥

θ

γ,P(t)
, θ ∈ (0, 1), γ > 1,

∀ t ∈ IT∗ ,

where γ0 is an arbitrary, but fixed real number with 1 < γ0 < 2(N − 1)/(N − 2).
Integrating this formula over IT∗ , we obtain

(19)
∥

∥

∥
u(m,n)

∥

∥

∥

L2(IT∗
,Lγ0 (∂G))

≤

(

∥

∥

∥
u(m)

∥

∥

∥

L2(IT∗
,W 1
2
(G))
+
∥

∥

∥
u(n)

∥

∥

∥

L2(IT∗
,W 1
2
(G))

)1−θ

×

×

{

∫

IT∗

∥

∥

∥
u(m,n)(t, ·)

∥

∥

∥

2

γ,P(t)

}
θ
2

.

Therefore, (C1) implies that
{

u(nk)
}∞
k=1 ⊂

{

u(n)
}∞
n=n∗

approaches u in

L2(IT∗ , Lγ0(∂G)), for Corollary 3.2 (E5) guarantees the boundedness of this se-

quence in L2(IT∗ ,W
1
2 (G)). Analogously, we derive the same result for

{

ū(n)
}∞
n=n∗

.

Now these convergence properties may be extended to Lp∗(ΓT∗), 1 ≤ p∗ <∞,
in the same way as in the proof of (C1). On ΓT∗ (instead of PT∗) we duplicate
the appropriate argumentation which is based on an application of Lebesgue’s
theorem, and obtain (C2). From (16), it follows that u ∈ BR[L∞(ΓT∗)].

(b) Now it remains to show that for the subsequence {nk}
∞
k=1 ⊆ {n}

∞
n=n∗

, Ap-
proximation Scheme 2.5 approaches the integral relation (4), and therefore, the
function u weakly solves Problem 1.1. For that purpose, we have to derive two
additional convergence properties.

Because of the boundedness of
{

ḡ(n)
}∞
n=n∗

in L∞(IT∗ , Lr(∂G)), it contains a

subsequence
{

ḡ(nk)
}∞
k=1
which tends to a function φ ∈ L∞(IT∗ , Lr(∂G)) in the

w∗-topology. In order to show that φ(t, x) equals g(t, x, u(t, x)) almost everywhere
on ΓT∗ , we consider

∫

IT∗

∥

∥

∥
ū(n)(t− hn, ·)− u(t, ·)

∥

∥

∥

2

2,∂G
dt

≤ 2

∫

IT∗

∥

∥

∥
ū(n)(t− hn, ·)− ū

(n)(t, ·)
∥

∥

∥

2

2,∂G
dt+ 2

∥

∥

∥
ū(n) − u

∥

∥

∥

2

2,ΓT∗

.

Analogously to the formula (19), the first summand of the right hand side may
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be estimated by

∫

IT∗

∥

∥

∥
ū(n)(t− hn, ·)− ū

(n)(t, ·)
∥

∥

∥

2

2,∂G
dt

≤ c

{

∫

IT∗

∥

∥

∥
ū(n)(t− hn, ·)− ū

(n)(t, ·)
∥

∥

∥

2

1

λ
,P(t)

dt

}θ

, θ ∈ (0, 1).

Therefore, with consideration to Corollary 3.2 (E2), and the convergence property
(C1), we have

∫

IT∗

∥

∥

∥
ū(nk)(t− hn, ·)− u(t, ·)

∥

∥

∥

2

2,∂G
dt −→ 0 as nk →∞.

Based on our assumptions on the function g, it may be easily shown that the Ne-
myckii operator G∗(v, u)(t, x) := g

R(v(t), x, u(t, x)) defines a continuous mapping
G∗ : L2(IT∗) × L2(ΓT∗) −→ Lr(ΓT∗) (cf. [17, Folgerung 1.28] or [18, Proposi-

tion 26.6]). Consequently, the subsequence
{

ḡ(nk)
}∞
k=1 converges to g(·, ·, u) in

Lr(ΓT∗). By means of standard arguments this implies that φ(t, x) is equal to
g(t, x, u(t, x)) almost everywhere on ΓT∗ , and thus

(20)

∫

IT∗

(

ḡ(nk)(t, ·)− g(t, ·, u(t, ·)), v(t, ·)
)

∂G
dt −→ 0, ∀ v ∈ L1(IT∗ , Lr′(∂G)).

Moreover, in virtue of the ψ ∈ C0,1(IT , Lκ(G)) and Corollary 3.2 (E4) where
ν > κ′, we obtain

((

ψ̄(n) − ψ
)

u
(n)
t , v

)

PT∗

≤

∫

IT∗

∥

∥

∥
ψ̄(n)(t, ·)− ψ(t, ·)

∥

∥

∥

κ,P(t)

∥

∥

∥
u
(n)
t (t, ·)

∥

∥

∥

ν,P(t)
‖v(t, ·)‖∞,P(t) dt

≤ ch
1/2
n

{
∫

T∗

‖v(t, ·)‖2∞,P(t) dt

}1/2

−→ 0, ∀ v ∈ L2(IT∗ , L∞(P(t))).

Now the convergence properties (C1), (C0), (20), and (21) enable us to carry
out the limit process nk →∞ in Approximation Scheme 2.5 for the subsequence
{nk}

∞
k=1 ⊆ {n}

∞
n=n∗

and test functions v ∈ V (QT∗) ∩ L2(IT∗ , L∞(P(t))). Since
V (QT∗) ∩ L2(IT∗ , L∞(P(t))) is dense in V (QT∗) this shows that the function u
satisfies the integral equation (4), and, therefore, weakly solves the parabolic-
elliptic Problem 1.1.

�
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Remark 3.4. Uniqueness of a weak solution to Problem 1.1 can be proved by
standard arguments, if, in addition to Assumption 1.6, g(t, x, ξ) is Lipschitz-
continuous with respect to (t, ξ).
Even without this additional assumption uniqueness can be shown, provided

the solution is more regular than guaranteed by Theorem 3.3. Namely, if u(t, ·)
exists for all t ∈ IT∗ in the sense of traces, then the space V (QT ) of test func-

tions (cf. Definition 1.7) may be extended to Ṽ (QT ) by removing the restriction
v(T, x) ≡ 0. Now the basic idea of the proof of uniqueness can be outlined as
follows:

Let u1, u2 be weak solutions and u = u1 − u2 . For almost all t0 ∈ IT∗ with

u(t0, ·) ∈W
1
2 (G) we solve the Dirichlet problem

(22) −(ψ v)t +Av = 0 on Qt0 , v = 0 on Γt0 , v(t0, x) = Rεu(t0, x),

where Rεu is an appropriate approximation of u with Rεu|∂G = 0. Employing

the resulting weak solution v ∈ Ṽ (Qt0) as test function in (4), we arrive at

(ψ(t0, ·)u(t0, ·) , Rεu(t0, ·)) = 0 .

It follows that u(t0, ·)|P(t0) = 0 as ε→ 0. In view of the weak maximum principle

Lemma 1.18 we finally obtain u(t0, ·) = 0 in G for almost all t0 ∈ IT∗ , i.e. we
have uniqueness.
Note that a weak solution to problem (22) exists if ψt is sufficiently small. This

topic shall be addressed in a forthcoming paper of the first author.
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[5] Jäger W., Kačur J., Solution of porous medium type systems by linear approximation
schemes, Numer. Math. 60 (1991), 407–427.
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