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Vanishing of sections of vector
bundles on 0-dimensional schemes

E. BarLrico

Abstract. Here we give conditions and examples for the surjectivity or injectivity of the
restriction map HO(X, F') — HO(Z, F | Z), where X is a projective variety, I is a vector
bundle on X and Z is a “general” 0-dimensional subscheme of X, Z union of general
“fat points”.
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Let F' be a rank r vector bundle on a projective variety X, F' spanned by
its global sections. Hence the pair (F, HO(X, F)) induces a morphism f from
X to the Grassmannian G(r,v), v := h%(X, F), of r-dimensional quotients of
H O(X , F'); the morphism f is uniquely determined, up to a choice of a basis of
HOY(X, F). The geometry of f(X) depends heavily on the rank of the restriction
map rp 7z : HY(X, F) — H(Z, F | Z) for suitable 0-dimensional subschemes of X
For instance the existence of hyperosculating points of f(X) or the existence of
high order degenerate points for the differential of f may be translated in terms
of rp, for suitable Z. In this paper we study rank (rg z) for a general union
of so-called “fat points”. The reader may find in [G], [H3], [I1l], [I2] and [AH]
references and motivations for the line bundle case. We just remark that this
is a generalization of the following interpolation problem: how many “functions”
(belonging to a fixed finite-dimensional vector space of “functions”) are there with
given Taylor expansion (up to a certain prescribed order) at a certain number of
points 7 What happens if the points are general? We will show that often rp 7
has maximal rank, i.e. it is injective or surjective.

Let X be an integral projective variety, m an integer > 0 and P € X;¢q4. Set
n := dim (X). The (m—1)-th infinitesimal neighborhood of P in X will be denoted
with mP; hence mP has (Ix p)™ as ideal sheaf. Often mP is called a fat point;
m is the multiplicity of mP and (n+m—1)!/(n!(m —1)!) = mP = h%(mP, O,,p)
its degree. If s,mq,...,mgs are integers > 0 and Py, ..., Ps are distinct points of
Xyeg the 0-dimensional scheme Z := | J; <;,«,m;P; is called a multi jet of X with
multiplicity max{m;}, type (s;m1,...,ms) and degree h°(Z,0). For a fixed
type (s;m1,...,ms) the set of all multi-jets of type (s;m1,...,ms) on X is an
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integral variety of dimension ns. Hence we may speak of the general multi-jet of
type (s;mi,...,ms).

Fix a vector bundle E on X and a very ample L € Pic(X). For every integer
m > 0 consider the following property (Condition ($;m) or Property ($; m)) which
the triple (X, F, L) may have:

Condition ($): There is an integer a(m, X, E, L) such for all integers k >
a(m, X, E, L) and all types (s;m1,...,ms) with multiplicity < m a general multi-
jet Z of type (s;myq, ..., mg) the restriction map TEQLOk 7 | HY(X,E® L®%) -
HY(Z,E ® L®%| Z) has maximal rank.

We say that the triple (X, E, L) satisfies Condition ($) (or that it has Property
(%)) if (X, E, L) satisfies ($;m) for all m > 0. In the range of integers in which we
will consider the restriction map rpg ok ; we will have HY(X,E® L®F) =0 for

i > 0 and hence if HO(X, E® L®k) has maximal rank, then its rank will be either
deg (Z) or x(E ® L®¥) (which is uniquely determined by % and the numerical
invariants of X, F and L).

In Section 2 we will prove the following criterion “reduction to the restriction to
a general curve section” to obtain Property ($) for a triple (X, F, L) on a variety
of dimension > 1.

Theorem 0.1. Fix integersn > 0, m > 0 and » > 0. Let X be an integral n-
dimensional projective variety, E/ a rank r vector bundle on X and L a very ample
line bundle on X. Assume the existence of integers aq,...,ap,—1 with a; > 0 for
all i and with the following property. Take general D;(a;) € |L®%|. For every
integer k with 1 < k < n — 1 set D[k;aq,...,ax) = (\j<;<k Di(a;). Assume
that E|D[n — 1;a1,...,an_1] satisfies Condition ($). Assume that r divides
both a := deg (L) and pq(Dn — 1;1,...,1]) — 1. Assume that (X, E, L) satisfies
Condition ($;1). Then (X, E, L) satisfies Condition ($;m).

The proof of Theorem 0.1 will use heavily the proofs in [AH]. In our opinion
the paper [AH] was a revolution on this topic: it contains an extremely powerful
improvement of a method previously introduced by the authors, the statements
proved there are very interesting and the loose ends left for the reader are very
stimulating. In Section 3 we will show for a huge number of Chern classes the
existence of rank 2 reflexive sheaves on P3 with Property ($). Using heavily the
results and proofs of [H2] we will prove the following theorem.

Theorem 0.2. Fix integers c1, ca and c¢3 with ¢1,c2 = cgmod (2), 0 < ¢3 <
deg — 12 — 4. If 4eg — 12 = 7 or 15, assume c3 # 0. If ¢; is even and ¢ is odd,
assume c3 < 4cg — ¢12 — 6. Then there exists a rank 2 stable reflexive sheaf F on
P3 with ¢;(F) = ¢; for i = 1,2,3 and with Property ($). Furthermore, if c3 = 0
and ¢ is even, then Condition ($) is satisfied by the general stable bundle in the
irreducible component of the moduli space of rank 2 vector bundles with Chern
classes c¢1 and co containing the real instanton bundles.

In the first section we will consider briefly the case in which X is a smooth
curve. We work over an algebraically closed field K. In Sections 2 and 3 we will
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assume char (K) = 0. It is impossible to follow the proof of Theorem 0.1 (resp.
0.2) without having on the table a copy of [AH] (resp. [H2]).

1. Vector bundles on curves

In this section we consider the case in which the variety is a smooth projective
curve C of genus g > 0 and we do not make any restriction on char (K). By the
classification of line bundles and vector bundles on curves of genus < 1, everything
is well known for ¢ < 1. We will repeat here the classification to show its relation
with Property ($) and that we need to make strong cohomological restrictions to
be sure that a vector bundle of rank > 1 has Property ($).

Example 1.1. Every vector bundle F on P! is the direct sum of line bundles,
say '~ Opi(a1) ®--- ® Op1i(ay) with a; > -+ > ar, and the isomorphism class
of F' is uniquely determined by the integers a1, ..., a,. For every effective divisor
Z of P! with deg(Z) = 2, we have h%(P1,I; @ Opi(a1) @ --- @ Op1(ar)) =
Y 1<i<ymax{a; + 1 — z,0}. Hence Opi(a1) ® --- ® Opi(ar) has Property (3)
if and only if a; = ar, i.e. if and only if it is semistable. Furthermore F has
Property ($;m) for some integer m > 1 if and only if it is semistable.

Example 1.2. By Atiyah’s classification of vector bundles on an elliptic curve
X ([A]) every vector bundle on X is a direct sum of semistable vector bundles
and a vector bundle on X has Property ($) if and only if it has Property ($,m)
for some integer m > 1 and this is the case if and only if it is semistable.

From now on we assume g > 2. It is easy to check (see [N, Lemma 2.6]) that
for any integer s > ¢ and any choice of s non-zero integers aq,...,as the map
7 C@) 5o 0la1) o Pic?(0), a = Y 1<i<s @i, given by 7((Pr,..., Ps)) =
Oc (Y <j<saiP;) is surjective. Hence the original asymptotic problem for the
vector bundle F is equivalent to the fact that for every integer = and for a general
M € Pic*(C), either h°(C, E ® M) =0 or h'(C, E ® M) = 0. This problem was
considered for the first time by Raynaud ([R]), at least when deg (F) is divisible
by rank (F); the general case may easily be reduced to this case using elementary
transformations. This condition (call it Condition (R) or Property (R)) is obvi-
ously satisfied if rank (E) = 1. If Condition (R) is true for E, then E must be
semistable. If F is a stable bundle with rank 2, then E satisfies Condition (R)
(see [R, Proposition 1.6.2], and use elementary transformations to reduce the case
deg (F) odd to the case deg (E) even considered in [R]). If F is a general stable
bundle (for its degree and rank), then F satisfies Condition (R) (see [R, Propo-
sition 1.8.1] if rank (E) divides deg(F) and use elementary transformations to
reduce the general case to the case considered in [R] or, if char (K) = 0, see [H1,
Theorem 1.2], for much more). If F has a Krull-Schmidt filtration whose graded
subquotients have the same slope and satisfy Condition (R), then F satisfies Con-
dition ($); for instance this is the case if £ has rank 2 and it is semistable but not
stable. For every smooth curve C' of genus g > 2 and for every integer x > 2 there
is a semistable bundle E of rank 29 without Property (R) (see [R, 3.1]); obviously
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at least one of the stable subquotients of F in a Krull-Schmidt filtration of F
cannot have Property (R).

2. Proof of Theorem 0.1

In this section we prove Theorem 0.1.

Remark 2.1. By the adjunction formula we have 2p,(Dn — 1;1,...,1]) =2 =
K-L-...-L+deg(L). Hence (again by the adjunction formula or by the genus
formula for reducible curves) if r divides both deg (L) and po(D[n—1;1,...,1])—1,
then it divides pq(D[n—1;b1,...,b,_1]) —1 for all integers b; > 0. If L = A®" for
some A € Pic (X) and either dim (X) > 3 or 7 odd, then this divisibility condition
is satisfied. If r is even and dim (X) = 2 the divisibility condition is satisfied if
L = A®2" for some A € Pic (X).

Remark 2.2. Assumer =2. If E | D[n—1;ay4,...,a,—1] satisfies Condition ($),
then obviously E | D[n — 1;ay1,...,an—1] must be semistable (see Section 1). If
Din — 1;aq,...an—1] is smooth (i.e. if X is smooth in codimension < 1) and
E|D[n—1;5a1,...,ap—1] is stable and “sufficiently general” or with low rank (say
r <2), then E| D[n —1;a1,...,a,—_1] satisfies Condition ($) by the discussion in
Section 1. It is easy to check that the same is true even if D[n—1;ay1,...,ap—1] is
singular. By the theory of semistability for reduced but reducible curves made in
[HK] if F | D[n—1;1,...,1] is semistable or stable, then E | D[n—1;ay,...,a—1]
has the same property (see [HK, Theorem 2.4]).

ProOF OF THEOREM 0.1: By induction on n we may assume that for all integers
k and a; with 1 < k < n — 1 the triple (DIk;a1,...,a;], E|Dlk;a1,...,ag],
L|Dlk;ay,...,a;]) satisfies Condition ($;m). By the divisibility condition all the
calculations and constructions made in [AH, §3, 4, 5, 6 and 7], work verbatim,
just inserting a factor r in some of the estimates; however, to help the reader
we will give a few details trying to use the language and, when not conflicting
with previous use, the notations of [AH]. Section 3 of [AH] is just nomenclature;
we just have to assume that in any (a,m)-configuration we want to use and in
any (d, m,a)-candidate we want to use both the number of free points and the
number of G,-residues are divisible by r. Lemma 3.2 of [AH] follows just from the
asymptotic estimate for h0(X, L®) for d > 0; as remarked in [AH], beginning
of page 11 during the proof of 1.1 (the case M # Oyx), the same is true for
hO(X, M @ L®%), M € Pic(X), M fixed; in our situation instead of M we have
the rank r vector bundle E and this gives that the same asymptotic estimates for
deg (Free (Z)) holds: the expected contribution of every zero-dimensional scheme
is r times its length, while asymptotically, up to terms of order d"~1 (d"™ in
the notations of [AH] because their ambient variety has dimension n 4+ 1) we
have h0(X, F @ L&) ~ r(h%(X, L®9)). Section 4 of [AH] just contains [AH,
Lemma 4.2]; this lemma holds in our situation (with both the degree of free points
and of the concentrated derivatives divisible by rank (F)) because its proof uses
only [AH, Lemma 3.2], whose extension was discussed before. As remarked in the
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first lines of [AH, §5], this would be sufficient (plus the corresponding assertion
in lower dimension) if one could start the inductive procedure on X with respect
to the degree of the zero-dimensional subscheme on X, i.e. if one had proved the
theorem for varieties of dimension dim (X) but for zero-dimensional schemes of
low degree; concerning [AH, § 5], we just need to use the concept of “concentrated
derivative” and extend [AH, Lemma 5.2]; for this extension we need only that all
integers h0(G1, E® L®? | (1) are divisible by rank (E) to be sure that at each step
both the numbers of free points on G (resp. G4—1) and the number of derivatives
on (i1 (resp. G4—1) are divisible by rank (E); see Remark 2.1 for this assertion; if
instead of G; UG,—1 we fix an integer a with 0 < o < a and consider G4 UGg—q
the same divisibility condition is satisfied for all cohomology groups appearing in
[AH, §6]. Section 7 of [AH] contains the reduction of [AH, Theorem 1.1], i.e. of our
Theorem 0.1, to the proof of [AH, Proposition 7.1]. The discussion with a vector
bundle F instead of M € Pic(X) works because every relevant integer appearing
therein is (under our assumptions) divisible by rank (E). Then the proof of the
reduction of [AH, 1.1] to [AH, 7.1] goes on by induction on dim (X). The starting
point of the induction on dim (X), i.e. the case of a curve ([AH, Proposition 7.2]) is
one of the assumptions of Theorem 0.1. To conclude the proof it remains to justify
the vector bundle extension of the key differential lemma [AH, Lemma 2.3]. We
will reduce the vector bundle case to the line bundle case (see Lemma 2.3 below).
This approach has the advantage that every improvement of [AH, Lemma 2.3]
(e.g. any characteristic free proof or any extension to more general base rings)
works verbatim. (|
Lemma 2.3. Let X be an integral n-dimensional projective variety over K
and F a rank r reflexive sheaf on X whose non locally free locus Sing (F') is
finite. Let H be an effective, reduced and irreducible Cartier divisor on X such
that H N Sing (F) = 0. Let W be a zero dimensional subscheme of X with
W N Sing (F) = 0, and let a, d be positive integers. Assume hO(H,F|H) —
deg (W | H) = ry > 0 with y integer. Fix y positive integers my, ..., my such that
deg (W) +2 21 <j<, 7(mi +n)!/myln! > hO(X,F). Let Py,..., P, be generic points
of Y and Qq,..., Qy generic points of H. Let Dp,;(Q;) be the simple residue of
m;Q; with respect to H and D := J;<;<,, Dm, (Q;). Set Q{m} := Zlgigy m;Q;,
T :=WU(X <jcymiPy), T := Resy(W)UD and T” := (W | H)U (U, <<, Qi)-
Assume HY (X, I\ F(—H)) = HY(X, I/ ® F(—H)) = H(H, Ir» ® (F | H)) =
0. Then H(X, I ® F) = 0.

PrROOF: Let 7 : P(F) — X be the projection. Since Op(p)(1) is relatively
very ample, there is R € Pic(X) such that M := 7*(R) @ Op(p)(1) is very
ample. We take a general complete intersection A of r — 2 hypersurfaces in the
linear system |M| and of an element of |M®"|. In particular, we assume that
7| A is étale in a neighborhood of 771(Q1 U --- U Qy) and of 771 (Wyeq). Set
{Qijhi<j<r == 1 HQ:)NA. Set W (r) := =1 (W)NAand H(r) := L (H)NA.
Note that HO(X, F) = HY(P(F),Op(f)(1)). We want to apply [AH, Lemma 2.3]
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to W () and the points Q;;. The points );; are not generic on H(7) because
m(Qij) = m(Q4¢) even if j # t. Nevertheless, the proof of [AH, §9, 10, 11, 12]
works in this situation. However, just the application of the statement of [AH,
Lemma, 2.3] would give 7y generic points P;; € A, while we want points Pi/j e A

with W(Pi/j) = 7(Py) for all 4, j,t and generic with this property. This is possible
because, since 7 | A is étale in a neighborhood of w_l(Ql U---UQy) we may pass
from the formal lemma to an effective degeneration of the points Q;;, 1 < j <,

preserving the condition of being in the same fiber of 7| A. We take P; := w(P};)
and conclude. g

We state explicitly the last part of the proof of Lemma 2.3, because it seems
to be useful even in the rank 1 case.

Remark 2.4. We use the notations of the statements of Lemma 2.3. Assume
that a subset S of {1,...,y} and every i € S, Qi € D; with D, integral curve
intersecting transversally H at @Q;; we allow the case D; = D; for some (i,7) €
S x S with i # j. Then in the statement of Lemma 2.3 for every i € S we may
take as P; a general point of D;.

3. Proof of Theorem 0.2

In this section we consider the case in which X = P? and prove Theorem 0.2.
Here we prove the existence of rank 2 stable vector bundles (and of non-locally
free reflexive sheaves) with Property ($) for a large number of Chern classes ¢;,
1 < i < 3. For all (c1,co,c3) covered by the statement of Theorem 0.2 we will
show that Condition ($) is satisfied by the general member of the irreducible
component, M (c1,ca,c3), of the moduli space of rank 2 stable reflexive sheaves
such that in [HH] and [H2] it was proved that a general E € M(cy,cg,c3) has
semi-natural cohomology in the sense of [HH]. Recall that a rank 2 reflexive sheaf
E on P?3 has semi-natural cohomology if for all integers t > —2 — ¢1(E)/2 at most
one the cohomology groups H*(P3, E(t)), 0 < i < 3, is not zero.

To explain the proof of Theorem 0.2 and the approach of [HH] and [H2] to the
proof of the existence of reflexive sheaves with semi-natural cohomology we will
consider first the following toy case.

Proposition 3.1. Let X be a smooth projective 3-fold, A, B, L € Pic(X) with L
very ample and a 1-dimensional subscheme of X. Fix an integer s > 0 and assume
that for a general surjection f : A® L% @ B ® L®%, Ker (f) is the flat limit of a
family of reflexive sheaves parametrized by an integral variety. Call F' the generic
member of this family. By semicontinuity F' has a good cohomological property
(e.g. Property (%)) if Ker (f) has the same property. We assume that the map
h(f()) : HO(X,A® L2 g Bo LO(6TD)) 5 HO(Y, Oy ® LO(H) is surjective
for all t > 0, that h(f(0)) is bijective and that hi(X, A ® L®(+)) = pi(X B ®
LBy = hy(Y, Oy @ LEH)) = 0 for every i > 0 and every t > 0. Assume that
for all integers t > 0, the integers hO(X, A @ L2y — pO(X, A @ LOGH 1)),
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hO(X, B®L®(s+t))—h0(X, B®L®(s+t—1)) and hO(Y, OY®L®(s—i—t))_hO(Y7 Oy ®
LB(sH=1)Y are even; this is always the case if L = M®2 for some M € Pic(X).
Then Ker (f) and F have Property ($) with respect to L.

PROOF: By semicontinuity it is sufficient to prove that Ker (f) has Property ($).
Let V be the total space of the vector bundle A@® B and call # : V — X
the projection. The surjection f(0) induces an embedding i : ¥ — V. We fix
the integer m > 0, a large integer n (how large it will be clear later), a type
(z;m1,...,mg) for multi-jets with multiplicity < m and a generic multi-jet Z of
type (z;my,...,mg). If my < m; for i <z, we may assume 2deg(Z) — (mg +
3) (Mg +2) (ma+1) /64 (Mg +2) (Mg +1)my /6 < hO(X, A@ LB+ 4 h0(X, B®
L&)y _p0(Y, Oy @ LOGT1)) = dim (Ker (f(n))) < 2deg (Z) + (me+3) (ma +
2)(mgz+1)/6— (my+2)(mg+1)my /6. Adding simple points, we will even assume
2deg (Z) > dim (Ker (f(n))). Then we apply the reduction steps in [AH, §3, 4, 5
and 6] to reduce the case of multiplicity < m to the case of multiplicity < m — 1;
here we work on 7~ (T') with T generic in |L®%| for some a > 0. The difference
with respect to [AH] is that now in the hypersurface 77 1(T") of V we have also
the a-deg (L |Y) points 7~ H(T) Ni(Y). Since Z,.qNT is made by generic points
of T and card (Z,..4 NT) increases with order > 1 as function of a, we may apply
verbatim the asymptotic estimates in [AH, Lemma 4.2]; here of course we use
the parity condition to pass from an assertion concerning Ker (h(f(n))) to an
assertion concerning Ker (h(f(n — a))). Then we exploit a general D € |[L®™ |
to reduce the assertion to the bijectivity of f(0); again, here we use the parity
condition. O

Remark 3.2. In the case A = B the proof of [H2, § 3] shows how to reduce the
search of pairs (s,Y) with A(f(0)) of maximal rank to the search of curves Y/ C X
with good postulation, i.e. to a problem usually much easier.

PrROOF OF THEOREM 0.2: We divide the proof into 4 steps.

Step 1. We follow the notations of the proof of 3.1. Again we reduce to the
case m = 1 (for some integer n’ < n with n’ — n even) taking always generic
hypersurfaces T € |L®?| with a even and degenerating T to the generic union
T'UT" with T € |L®@=2)|, 7" € |L®2|, T' and T” generic, instead of taking
T' € |L®@=1] and T” € |L|. In this way we do not need the parity condition
assumed in 3.1 to reduce to the critical case m = 1.

Step 2. We follow the proof of [H2] and in particular the proofs in [H2, Sections 3,
4, 5 and 6]. We assume m = 1, i.e. we consider only simple points. We have seen
in Step 1 how to reduce the general case m > 1 to this case without using any
parity condition. We do not have a curve, Y, for which a suitable map f(0) (with
deg (A) = 0 and deg (B) = —b, 0 < b < 3) is bijective. In [H2] the corresponding
scheme Y is the union of a smooth curve Y/ and of h%(P3, A® L®*) + hO(P3, B®
L®%) — hO(Y!, Oy(s)) colinear points.
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Step 3. If Y = Y’ and the corresponding sheaf has Chern classes c;, then we
have won. In the general case there is an integer, e, with 0 < e < s < s (see
[H2, §4, notations 4.0]) for the cases with b # 0, or integers e;,1 = 1,2, with
0 < e; < s for the case b = 0 (see [H2, § 3]) and the union Y of suitable collinear
points. A sheaf with seminatural cohomology will be associated to the integer s
and to a union of integral components of Y’ (case in which HO(P3, F(s)) # 0)
or to a curve containing Y’ and a line containing the e collinear points (case in
which HO(P3, F(s)) = 0). We assume n’ > s+ (s+1)2. This is true (for fixed m)
for large n. We have an integer y > 0, a “suitable” general curve T, a general
surjection f(0) : Op3(s)®Ops(s—b) — Op(s); to conclude it would be sufficient
to prove that for general S ¢ P? with card (S) = y the induced map f(0,W) :
HOY(P3, Iy ®0ps(s)) @ HO (P3, Ity ®O0ps (s)) — HO(T, Orp(s)) has maximal rank.
Since the local deformation spaces of the sheaves of type Ker (f(0)) is smooth, each
of them is a flat limit of reflexive sheaves belonging to the irreducible component
M(eq,c9,c3). Hence it is sufficient to check that for some integer k > s with
k < n' there is A C P3, card (4) = [(h°(P3,0ps(k)) + h°(P3, Ops(k — b)) —
hO(T,0r(k)))/2] the map f(k — s, A) : HO(P3,I4 @ Ops(k)) ® HO(P3, 14 ®
Ops (k — b)) — HO(T, Op(k)) is surjective and for some B C P3 with card (B) =
card (A) + 1 the map f(k—s, B) : HY(P3, I ® Ops(k)) @ HO(P3,Ip ® Ops(k —
b)) — HY(T, Op(k)) is injective. We start with a good configuration (a curve M
union collinear points) for the integer s — 1 constructed in [H2] (in §3+b for the
integer b, 0 < b < 3). Then, instead of using it to obtain a good configuration
for the integer s we add over a plane H (i.e. on V(Op2(—b)) for b # 0 and
on P2 x A2 for b = 0) general points and a low degree curve which will be a
union of components of the curve T'\ M; we do this with the construction with
nilpotents described in [H2, 4.5, 5.5 and 6.5]. However, since we may use up
to (s +1)2 > deg (T) — deg (M) steps, we are never forced to use more than 3
nilpotents at each step and hence the arithmetic simplifies drastically.

Step 4. For the last assertion, i.e. that M(0,c2,0) contains the real instanton
bundles, see the introduction of [HH]. O
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