Eng\.in Kaynar, Burcu N. Türkmen, Ergül Türkmen
A note on generalizations of semisimple modules

Comment.Math.Univ.Carolin. 60,3 (2019) 305-312.

Abstract:A left module $M$ over an arbitrary ring is called an $\mathcal{RD}$-module (or an $\mathcal{RS}$-module) if every submodule $N$ of $M$ with ${\rm Rad}(M)\subseteq N$ is a direct summand of (a supplement in, respectively) $M$. In this paper, we investigate the various properties of $\mathcal{RD}$-modules and $\mathcal{RS}$-modules. We prove that $M$ is an $\mathcal{RD}$-module if and only if $M={\rm Rad}(M)\oplus X$, where $X$ is semisimple. We show that a finitely generated $\mathcal{RS}$-module is semisimple. This gives us the characterization of semisimple rings in terms of $\mathcal{RS}$-modules. We completely determine the structure of these modules over Dedekind domains.

Keywords: radical; supplement

DOI: DOI 10.14712/1213-7243.2019.011
AMS Subject Classification: 16D10 16D99